$\mathbb{R}.3$

UNIONE DELLA ROMAGNA FAENTINA Comune di Faenza

Studio Tecnico geom.CAVINA-MONTEVECCHI

corso Matteotti 27 Faenza

arch.PAGANI

fax 0546-680247

tel.0546-28197

Piano Particolareggiato relativo alla scheda di PRG n.37 "Area Via Reda 2" - COMPARTI 1-4

UBICAZIONE: Via Reda - Via Soldata

COMMITTENTE

PINO s.r.l.

RELAZIONE GEOLOGICA

Fg.176 Mapp.170-294-92-193-195 194-196-205

Rapp. 1:1000

PROGETTISTA

Con la consulenza specialistica di:

TOPOGRAFIA

VALUTAZIONE AMBIENTALE ED ACUSTICA

GEOLOGIA

RETI FOGNARIE-IDRICHE ILLUMINAZIONE PUBBLICA

-Studio Topografico Faenza -Ing. Conti Franca

-Dott. Geol. Marabini Stefano

-Studio Energia

Studio Geologico dott. Stefano Marabini

Via San Martino, 1

48018 FAENZA (RA) tel.: 348 2680965 e-mail: stemarabini@libero.it

PINO s.r.l.

PIANO PARTICOLAREGGIATO
relativo alla
SCHEDA P.R.G. n.37
"AREA VIA REDA 2"
COMPARTI 1-4
(Comune di Faenza - Ra)

RELAZIONE GEOLOGICA

(D.M. 17/01/2018, DGR 2193/2015):

- 1 GENERALITA'.
- 2 INQUADRAMENTO GEOLOGICO GENERALE.
- 3 INDAGINI GEOGNOSTICHE.
- 4 ANALISI GEOLOGICO-TECNICA.
- 5 ANALISI DEL RISCHIO SISMICO.
- 6 CONCLUSIONI.

Allegati:

- TAV. 1 Carta geologica 1:10.000
- TAV. 2 Carta geotecnica e idrogeologica 1:1.000
- TAV. 3 Sezione geologico-tecnica 1:1.000
- n. 4+2 grafici e tabelle di penetrometrie statiche (CPT)
- n. 2 stratigrafie di trincee geognostiche
- Rapporto di indagine sismica mediante tromografo

1 - GENERALITA'.

Su incarico della Proprietà è stata effettuata una analisi geologico-tecnica e del rischio sismico a supporto del <u>PIANO PARTICOLAREGGIATO relativo alla SCHEDA PRG n. 37 "AREA VIA REDA 2" – COMPARTI 1-4</u> (Comune di Faenza – Ra), il quale prevede la realizzazione di lotti per fabbricati a uso produttivo/artigianale su una superficie di circa 2,7ha (v. PROGETTO dello Studio CAVINA-MONTEVECCHI-PAGANI di Faenza e TAVV. 1, 2 e 3).

In considerazione dei caratteri geologici generali noti per l'ambito di piana terrazzata in oggetto posto alla periferia est di Faenza (v. ad es. Cartografia Geologica Regione Emilia-Romagna), e in riferimento alle Normative Tecniche vigenti (D.M. 17/01/2018, DGR 2193/2015), per definire la fattibilità geologica dell'intervento urbanistico in progetto sono stati effettuati rilievi morfostratigrafici e idrogeologici e, in particolare, si sono acquisiti i risultati delle seguenti indagini geognostiche e geofisiche in situ (v. allegati):

- n. 4 penetrometrie statiche (CPT 1, 2, 3 e 4) effettuate in data 11/03/2019 all'interno dell'area di studio e spinte a rifiuto tecnico in corrispondenza di uno strato ghiaioso compatto sino a profondità massima di -16m, e per ulteriore controllo areale anche n. 2 penetrometrie statiche (CPT 2/08, 5/08) effettuate nel 2008 nell'adiacente "AREA VIA REDA 1".
- <u>n. 2 trincee geognostiche</u> scavate a profondità di -4/-5 metri per un accertamento litologico e idrogeologico diretto dei terreni superficiali, rispettivamente posizionate al centro dell'area di studio (T1) e al limite meridionale (T2).
- n. 1 sessione di misure geofisiche mediante tromografo, per la determinazione della Vs 30 e della Categoria sismica dei terreni a partire dalla frequenza di risonanza del terreno.

Inoltre, l'analisi del rischio sismico è stata integrata con l'acquisizione critica dei risultati dello studio di microzonazione sismica (D.A.L. 112/2007) recentemente commissionato dal Comune di Faenza, che sono stati aggiornati in coerenza con quanto richiesto dalla DGR 2193/2015.

I risultati complessivi dell'analisi geologico-tecnica e sismica sono illustrati nella presente **Relazione Geologica**, che è corredata dei seguenti elaborati cartografici e grafici:

- TAV. 1 Carta geologica 1:10.000
- TAV. 2 Carta geotecnica e idrogeologica 1:1.000
- TAV. 3 Sezione geologico-tecnica 1:1.000

1

2 - INQUADRAMENTO GEOLOGICO GENERALE.

2.1 Geomorfologia e idrogeologia superficiale.

L'"AREA VIA REDA 2" si colloca, a quota compresa tra 33/35 m s.l.m. e leggermente elevata rispetto alla piana di fondovalle attuale posta alcune centinaia di metri più a nord (*Unità di Modena* – AES8a), integralmente nell'ambito del vasto semiconoide orientale del sistema F.Lamone/Marzeno di età Pleistocene superiore/Olocene antico (*Subsintema di Ravenna* – AES8), la cui superficie piana costituisce il *terrazzo del Borgo Durbecco* (v. TAV. 1).

In particolare, questa porzione di piana terrazzata presenta un pendenza regolare di circa 0,7% verso nord-est che garantisce condizioni di buona efficienza per il deflusso idrico superficiale delle acque meteoriche per un adeguato intorno.

L'elemento del reticolo idrografico minore più prossimo all'area di studio è costituito dallo *Scolo Cerchia*, il cui alveo artificiale e rettilineo (parzialmente intubato) costeggia la Via Reda che delimita a ovest l'area di studio (v. TAVV. 1, 2).

2.2 Litostratigrafia.

Nell'ambito dell' "AREA VIA REDA 2", attualmente adibita a coltivi (eccetto un modesto fabbricato zootecnico da demolirsi), affiora estesamente uno spesso suolo vegetale omogeneo di colore bruno, a tessitura prevalentemente limosa e decarbonatato (tipo suoli *Tegagna* nella Classificazione Regione E-R), le cui caratteristiche di elevata evoluzione documentano una stabilità geomorfologica "storica" dell'area (in pratica che non è stata soggetta ad alluvionamenti da alcuni millenni).

Per quanto riguarda la litostratigrafia dei depositi sedimentari del primo sottosuolo, le informazioni geognostiche bibliografiche (v. ubicazione in FIG.1 delle indagini dell'Archivio Geognostico Regionale) e quelle di nuova acquisizione (v. par. 3.1), consentono di delineare un quadro attendibile sino a profondità di una ventina di metri, così sintetizzabile (v. anche Sezione geologicotecnica di TAV. 3):

a) <u>orizzonte superficiale</u> (<u>strati A e B</u>), di spessore intorno 7/9m, costituito da terreni fini a prevalente granulometria limoso-argillosa e limoso-sabbiosa, da normalmente consolidati a notevolmente addensati e/o concrezionati.
Nella porzione superiore di questo strato alluvionale fine, la cui deposizione è riconducibile al *Pleistocene finale – Olocene antico* (circa 10.000 anni fa), sono presenti sottili orizzonti di paleosuoli sepolti, tra cui il cosiddetto *Paleosuolo San Martino*, individuato per la prima volta proprio tra questa zona e Santa Lucia

delle Spianate durante i lavori per l'Acquedotto di Romagna nei passati anni '80 (Marabini S., Lenaz R., Vai G.B., 1987 - Pleistocene superiore e Olocene del margine pedeappenninico romagnolo: rapporto preliminare, Rend. Soc. Geol. It., 10, pp.33-37).

- b) <u>orizzonte profondo</u> (<u>strato C</u>), a profondità compresa tra 7/9m e 13/15m, costituito da alternanza di prevalenti sabbie più o meno limose e limi argillososabbiosi, tendenzialmente addensati.
- c) <u>orizzonte basale</u> (<u>strato D</u>), a partire da profondità intorno -13/15m sino ad almeno una ventina di metri, costituito da terreni ghiaioso-sabbiosi molto addensati.

La geometria tabulare degli orizzonti alluvionali del primo sottosuolo dell'"AREA VIA REDA 2", che è schematizzata nella Sezione geologico-tecnica di TAV. 3 sulla base dei risultati geognostici, non evidenzia in generale il rischio di discontinuità tali da rappresentare criticità geologico-tecniche per la fattibilità di "normali" assetti fondali per gli edifici in progetto (quali potrebbe essere la presenza di paleoalvei colmati con "terreni molli").

2.3 Idrogeologia sotterranea.

Per quanto riguarda l'idrogeologia sotterranea in corrispondenza dell'"AREA VIA REDA 2" è innanzitutto da considerare che il primo sottosuolo è caratterizzato, sino a profondità di almeno una decina di metri, dalla presenza di orizzonti decimetrici/metrici di alluvioni fini e poco permeabili tali da indurre, nel loro insieme, un discreto rallentamento per la filtrazione verticale delle acque meteoriche e quindi situazioni locali di potenziale ristagno idrico subsuperficiale.

Allo scopo di inquadrare con attendibile progettualità preliminare l'idrogeologia sotterranea dell'area di studio, sono state comunque elaborate le isofreatiche di **TAV. 2**, integrando i seguenti dati freatimetrici acquisiti entro i fori penetrometrici del marzo 2019, dopo un periodo invernale di modeste precipitazioni meteoriche:

penetrometrie	profondità falda
statiche (CPT)	(11 marzo 2019)
CPT 1	-5,8m
CPT 2	-5,9m
CPT 3	-5,9m
CPT 4	-5,1m

Questi valori sono coerenti con i dati freatimetrici dell'*Archivio Geognostico Regionale* e in particolare con la CARTA IDROGEOLOGICA DEL PRG. '98 del Comune di Faenza, elaborata sulla base della CARTA ISOPIEZE 1:10.000 (a firma dr. geol. F.Foschi, dr. geol. G.Ortelli, dr. geol. O.Zani) contenuta in: USL N.37 - FAENZA - INDAGINE IDROGEOLOGICA E IDROCHIMICA FINALIZZATA ALLA VALUTAZIONE DELLA QUALITA' DELLE ACQUE DELLA FALDA FREATICA NEI COMUNI DI FAENZA, CASTELBOLOGNESE, SOLAROLO, novembre 1993, in cui per questa zona fu stimata una profondità minima del livello della falda freatica prossima a -5/m rispetto al piano campagna naturale.

In sintesi, sulla base delle informazioni idrogeologiche disponibili, si possono così inquadrare i caratteri idrogeologici sotterranei in corrispondenza dell'"AREA VIA REDA 2", i quali rappresentano implicazioni obiettivamente marginali in termini di interferenza per l'edificazione:

- a) Il deflusso della falda freatica si esplica con prevalente gradiente verso nord-est, cioè lungo l'asse del semiconoide, apparendo condizionato dalla geometria lenticolare degli orizzonti di terreni alluvionali subsuperficiali meno permeabili, concentrati soprattutto nella zona occidentale.
- **b)** Interpretando la forma dei grafici penetrometrici e i dati geognostici stratigrafici, si desume, indicativamente, che la profondità minima raggiunta dal livello piezometrico negli ultimi secoli, nei periodi climatici molto piovosi, abbia comunque oscillato <u>a profondità di oltre -3/-3,5m</u>.

3 - INDAGINI GEOGNOSTICHE.

3.1 Prove penetrometriche statiche.

Nella TAV. 2 sono indicati i siti delle <u>n. 4 penetrometrie statiche</u> (CPT1, CPT2, CPT3, CPT4) appositamente eseguite nel marzo 2019 all'interno dell'"AREA VIA REDA 2", oltre che delle <u>n. 2 penetrometrie statiche</u> (CPT 2/08 e CPT 5/08) eseguite nel settembre 2008 nell'adiacente "AREA VIA REDA 1" a monte.

Nei grafici e nelle tabelle delle penetrometrie statiche, eseguite con attrezzatura da 20t utilizzando punta meccanica (*friction jacket cone*), sono tabulati in particolare i seguenti parametri:

- Rp (kg/cmq): Resistenza punta
- RI (kg/cmq): Resistenza laterale locale
- Rp / Rf (rapporto di Begemann)

parametri geomeccanici:

γ = peso dell'unità di volume

 c_u = coesione non drenata

 φ' = angolo di resistenza al taglio

E' = modulo di deformabilità per incremento netto di tensione

3.2 Trincee geognostiche.

Nella **TAV. 2** sono anche indicati i siti delle <u>n. 2 trincee geognostiche</u> scavate con pala meccanica allo scopo di verificare direttamente litologia e caratteri idrogeologici dei terreni di potenziale appoggio per fondazioni superficiali.

Le osservazioni di dettaglio relative alle trincee geognostiche sono riassunte nelle seguenti colonne stratigrafiche:

TRINCEA 1: zona nord

	0 m
suolo arativo limoso non calcareo	0 m
limo chiaro (= orizzonte calcico alla base del suolo)	-0,50
limo sabbioso e sabbia limosa giallastra, asciutti	-0,80
limo giallastro con sparse concrezioni calcaree	-1,40
limo bruno-giallastro, compatto (= paleosuolo ?)	-1,75
limo giallastro, asciutto e compatto	-1,90
limi scuro, asciutto e compatto (= paleosuolo)	-2,10
limo sabbioso giallo screziato "tenero"	-2,20
sabbia media gialla asciutta	-2,40
alternanza di limi e limi argillosi di colore screziato grigiastri-	-2,70 ocracei
con concrezioni calcaree, compatti	-4,00 fine scavo
	-4,00 line scavo
TRINCEA 2 : zona sud	
	0
cuolo limaca bruna, non calcarao	0 m
suolo limoso bruno, non calcareo	
limo biancastro, concrezionato da abbondanti patine calcaree e calcinelli, molto compatto (= orizzonte calcico alla base del suolo)	- 0,70
limo biancastro, concrezionato da abbondanti patine calcaree e calcinelli, molto compatto (= orizzonte calcico alla base del suolo)	
limo biancastro, concrezionato da abbondanti patine calcaree e calcinelli, molto compatto (= orizzonte calcico alla base del suolo) sabbie limose chiare, asciutte, molto compatte	- 0,70
limo biancastro, concrezionato da abbondanti patine calcaree e calcinelli, molto compatto (= orizzonte calcico alla base del suolo) sabbie limose chiare, asciutte, molto compatte sabbie chiare con subordinati livelli decimetrici di limo, molto compatte e parzialmente concrezionate	- 0,70
limo biancastro, concrezionato da abbondanti patine calcaree e calcinelli, molto compatto (= orizzonte calcico alla base del suolo) sabbie limose chiare, asciutte, molto compatte sabbie chiare con subordinati livelli decimetrici di limo, molto compatte e parzialmente concrezionate (quasi cementate a -2,8m)	- 0,70
limo biancastro, concrezionato da abbondanti patine calcaree e calcinelli, molto compatto (= orizzonte calcico alla base del suolo) sabbie limose chiare, asciutte, molto compatte sabbie chiare con subordinati livelli decimetrici di limo, molto compatte e parzialmente concrezionate (quasi cementate a -2,8m) 2,80 sabbie da medio grossolane a fini, giallastre, asciutte e molto compatte	- 0,70
limo biancastro, concrezionato da abbondanti patine calcaree e calcinelli, molto compatto (= orizzonte calcico alla base del suolo) sabbie limose chiare, asciutte, molto compatte sabbie chiare con subordinati livelli decimetrici di limo, molto compatte e parzialmente concrezionate (quasi cementate a -2,8m) 2,80 sabbie da medio grossolane a fini, giallastre,	- 0,70

3.3 Sintesi dei risultati geognostici.

Sulla base dei valori penetrometrici e della taratura litologica fornita dalle **trincee geognostiche**, nei diagrammi penetrometrici sono sintetizzate le seguenti suddivisioni litostratigrafiche dei terreni del primo sottosuolo all'interno

dell'"AREA VIA REDA 2", al di sotto del suolo agrario (v. anche Sezione geologico-tecnica di TAV. 3):

strato A (superficiale): con base a profondità di -3/-3,5m, costituito da terreni prevalentemente fini (limi e sabbie fini parzialmente concrezionate di calcare), asciutti e tendenzialmente resistenti (Rp medio ≥ 20-25daN/cmq).

Si tratta di antichi terreni alluvionali consolidatesi naturalmente a seguito di processi di essiccamento e pedogenetici, localmente con <u>discreto sviluppo di</u> concrezionamento carbonatico.

strato B (subsuperficiale): a profondità compresa tra -3/-3,5m e -7/-8,5m, costituito da alternanza di terreni prevalentemente limoso-argillosi e limoso-sabbiosi, parzialmente saturi e mediamente resistenti (Rp medio ≈ 20daN/cmq).

strato C (profondo): a profondità compresa tra -7/-8,5m e -13,5/-14,5m, costituito da terreni prevalentemente sabbiosi più o meno limosi, saturi e a grado di addensamento tendenzialmente elevato (Rp medio ≥ 20-25daN/cmq).

strato D (basale) : a profondità di oltre -13,5/-14,5m, costituito da terreni ghiaioso-sabbiosi resistenti (Rp medio » 100daN/cmq).

4 - ANALISI GEOLOGICO-TECNICA.

Allo scopo di definire la fattibilità geologico-tecnica degli interventi edificatori in progetto nell' "AREA VIA REDA 2" è stata effettuata una specifica analisi preliminare, tenendo innanzitutto conto che l'analisi morfostratigrafica e idrogeologica non ha obiettivamente evidenziato situazioni di particolare criticità geologica per l'edificabilità della medesima.

In particolare, l'analisi geologico-tecnica è stata quindi indirizzata alla definizione di fattibilità di **fondazioni superficiali**, e a tale scopo in **TAV. 2** sono riportati, in corrispondenza dei singoli punti di indagine penetrometrica, valori medi e cautelativi di **Rp** (daN/cmq) per i terreni posti rispettivamente a -1,6/-2,6m e -2,6/-4m, cioè negli intervalli di profondità di appoggio fondale per edifici privi o muniti di piani interrati.

In considerazione di valori penetrometrici arealmente omogenei e tendenzialmente elevati che sono stati riscontrati, non si è ritenuto di proporre, all'interno dell'area di studio, alcuna zonazione di edificabilità, individuando la seguente unica <u>classe unica di edificabilità</u> (v. TAV. 2):

ZONA A : terreni superficiali di fondazione a buone caratteristiche geomeccaniche (Rp medio ≥ 18daN/cmq).

Sulla base di questa constatazione, si prospettano come particolarmente idonee le seguenti soluzioni di assetto fondale superficiale:

Fabbricati privi di piano interrato: fondazioni nastriformi e/o a plinti

con piano di appoggio a profondità di -1,5/-2m

Fabbricati muniti di piano interrato: fondazioni a platea

con piano di appoggio a profondità di -3/3,5m

Per quanto riguarda una stima preliminare di **Pressione Ammissibile** dei terreni superficiali di fondazione dell'"AREA VIA REDA 2", si ritiene attendibile e prudenziale, in rapporto ai valori penetrometrici obiettivamente buoni e alla litologia limosa e sabbiosa dei medesimi, di considerare comunque un valore massimo di **coefficiente di correzione** = 14 a partire dai valori medi prudenziali di **Rp (v. teorie sperimentali di Sanglerat e di L'Herminier)**.

Quindi, facendo un riferimento critico alla distribuzione areale dei valori medi di **Rp (v. TAV. 2)**, si prospetta il seguente quadro preliminare di riferimento per la portanza dei terreni di fondazione superficiali:

- fondazioni nastriformi e/o a plinti

con piano di appoggio a profondità minima pari a -1,5m:

P.Amm. (Pressione Ammissibile) minima = Rp /14

= 21/14

= 1,5daN/cmq

- fondazioni a platea

con piano di appoggio a profondità di -3/3,5m:

P.Amm. (Pressione Ammissibile) massima = Rp /14

= 18/14

= 1,25 daN/cmq

I suddetti valori di portanza sono compatibili anche in termini di compressibilità dei terreni, come si desume indicativamente dalla seguente stima dei cedimenti ottenuta considerando per la diffusione dei carichi il grafico di

Boussinesq-Westergaard, e in particolare : a) sovraccarico di 0,6daN/cmq (1,5daN/cmq - pressione di sovraconsolidamento stimata equivalente al peso di uno strato di terreno di spessore 5m) per fondazioni nastriformi larghe 1m e poggiate a -1,5m; b) sovraccarico di 0,25daN/cmq (1,25daN/cmq - pressione di sovraconsolidamento stimata come equivalente al peso di uno strato di terreno di spessore 5m) per una platea con "nervature" larghe 2m e poggiata a -3m:

VALUTAZIONE DEI CEDIMENTI

mv = 1 / (a · Rp) = coeff. compressibilità

in cui: a = coeff. terreno

Rp = Resistenza statica punta (daN/cmq)

 $\begin{array}{lll} \Sigma \delta h = \Sigma h \cdot mv \cdot \delta p = \text{cedimento totale (cm)} \\ \text{in cui:} & \delta h & = \text{cedimento parziale (cm)} \\ & h & = \text{spessore strato singolo (cm)} \end{array}$

 δp = incremento carico (daN/cmq)

FONDAZIONI NASTRIFORMI POGGIATE A -1,5m

PENETROM	ETRIA S	TATICA	CPT 1
strati	δρ	mν	δh
-1,5/-2,5m	0,60	0,007	0,40
-2,5/-3,5m	0,33	0,006	0,20
-3,5/-4,5m	0,18	0,008	0,14
-4,5/-5,5m	0,12	0,008	0,10
-5,5/-6,5m	0,10	0,008	0,08
-6,5/-7,5m	0,08	0,008	0,06
-7,5/-8,5m	0,07	0,005	0,03
-8,5/-9,5m	0,06	0,007	0,04
-9,5/-10,5m	0,05	0,006	0,03

PENETROME	TRIA ST	TATICA (CPT 3
strati	δр	mv	δh
-1,5/-2,5m	0,60	0,007	0,40
-2,5/-3,5m	0,33	0,006	0,21
-3,5/-4,5m	0,18	0,007	0,13
-4,5/-5,5m	0,12	0,007	0,08
-5,5/-6,5m	0,10	0,007	0,07
-6,5/-7,5m	0,08	0,008	0,07
-7,5/-8,5m	0,07	0,006	0,04
-8,5/-9,5m	0,06	0,007	0,04
-9,5/-10,5m	0,05	0,007	0,04

 $\Sigma \delta h = 1,07cm$

 $\Sigma \delta h = 1,08cm$

FONDAZIONI A PLATEA POGGIATE A -3,5m

PENETROMETRIA STATICA CPT 1												
strati	δр	mv	δh									
-3,5/-5,5m	0,25	0,008	0,39									
-5,5/-7,5m	0,14	0,008	0,22									
-7,5/-9,5m	0,08	0,006	0,08									
-9,5/-11,5m	0,05	0,005	0,05									
-11,5/-13,5m	0,04	0,003	0,03									
-13,5/-15,5m	0,03	0,002	0,01									

$$\Sigma \delta h = 0,78cm$$

PENETROMETRIA STATICA CPT 3													
strati	δр	mv	δh										
-3,5/-5,5m	0,25	0,007	0,35										
-5,5/-7,5m	0,14	0,008	0,21										
-7,5/-9,5m	0,08	0,007	0,10										
-9,5/-11,5m	0,05	0,007	0,07										
-11,5/-13,5m	0,04	0,006	0,05										
-13,5/-15,5m	0,03	0,003	0,02										

$$\Sigma \delta h = 0.80 \text{ cm}$$

<u>5 - ANALISI DEL RISCHIO SISMICO.</u>

Allo scopo di definire in termini di rischio sismico la fattibilità degli interventi edificatori in progetto nell'"AREA VIA REDA 2", è stata sviluppata, così come richiesto dal **D.M.** 17/01/18, una specifica analisi indirizzata all'esame dei seguenti aspetti:

- Elementi generali di Microzonazione sismica.
- Classificazione sismica del sito.
- Valutazione del rischio di liquefazione

5. 1 Elementi generali di Microzonazione sismica (D.G.R. 2193/2015)

Con <u>Deliberazione della Giunta Regionale n. 1919/2013</u> la Regione Emilia-Romagna ha finanziato gli studi di microzonazione sismica del territorio dell'Unione della Romagna Faentina, e in particolare nel Comune di Faenza è stato condotto uno studio di microzonazione sismica – approfondimento di livello 3 (Sangiorgi S., Righini T., Milito A., 2015), nell'ambito del quale si è proceduto ad una completa implementazione dei precedenti livelli di approfondimento (PSC 2009), al fine di adeguarli agli standard di archiviazione informatica (Standard MS 3.0 - Commissione tecnica per la microzonazione sismica, 2013).

Nell'aprile 2018 tali studi hanno ottenuto la certificazione di conformità da parte della Regione Emilia-Romagna. Gli elaborati che costituiscono gli studi di microzonazione sismica certificati sono consultabili sul sito della Regione Emilia-Romagna al seguente link: http://geo.regione.emilia-romagna.it/schede/pnsrs/. Gli studi, basati su dati di sottosuolo pregressi e su ulteriori e specifiche indagini geognostiche e geofisiche appositamente eseguite, hanno consentito di espletare importanti approfondimenti relativamente ai seguenti effetti cosismici:

- risposta sismica locale (amplificazione) → attraverso l'elaborazione di modelli numerici monodimensionali di RSL elaborati con il noto software SHAKE 2000;
- verifiche della liquefacibilità dei sedimenti granulari e poco coesivi saturi
 → mediante approcci semplificati da prove penetrometriche CPTU (Idriss & Boulanger, 2008) e prove dinamiche di laboratorio (taglio semplice ciclico);

, sulla base dei quali sono stati prodotti i seguenti elaborati cartografici:

- Carta delle indagini
- Carta geologico-tecnica
- Carta delle frequenze naturali dei terreni
- Carta delle Microzone Omogenee in Prospettiva Sismica MOPS
- Carta delle velocità delle onde di taglio Vs
- Carte della microzonazione sismica.

Di seguito si riportano gli estratti delle carte MOPS e di microzonazione sismica relativi all'"AREA VIA REDA 2":

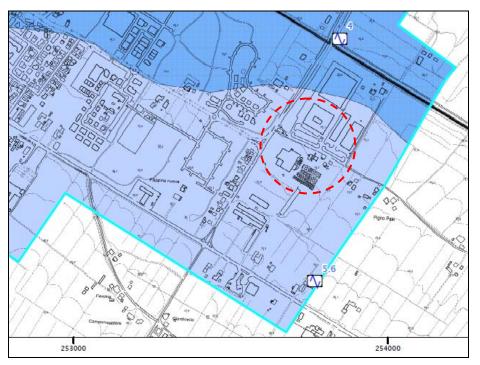


Fig. 1: Carta delle MOPS

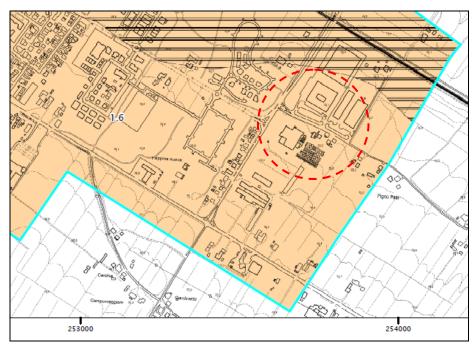


Fig. 2: Carta di microzonazione sismica di livello 3 – FHPGA.

Fig. 3: Carta di microzonazione sismica di livello 3 – FHo,1-0,5s

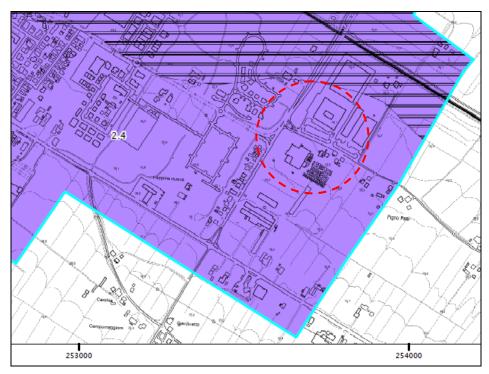


Fig. 4: Carta di microzonazione sismica di livello 3 – FH0,5-1s

Con la D.G.R. 2193/2015 è stato introdotto, da parte della Regione, un sostanziale aggiornamento degli indirizzi per gli studi di microzonazione sismica (D.A.L. 112/2007). Tali aggiornamenti tengono conto delle Norme Tecniche per le Costruzioni (D.M. 14/1/2008), delle ulteriori esperienze derivate da oltre otto anni di applicazione della D.A.L. 112/2007 e delle specifiche esperienze seguite agli eventi sismici italiani di L'Aquila 2009 e della pianura emiliana del 2012. In sintesi, le principali novità contenute nella D.G.R. 2193/2015 consistono:

- nelle rimodulazioni degli abachi di microzonazione sismica da considerarsi per le analisi semplificate ("livello 2");
- nella definizione di un ulteriore parametro di amplificazione riferito all'intensità spettrale di Housner (per l'intervallo di periodo T compreso tra 0,5 s e 1,5 s);
- nella definizione dell'input sismico (a_g al sito di riferimento) che ora è definito in base ai valori di pericolosità sismica elaborati dall'INGV per tutto il territorio nazionale sui punti di una griglia di passo pari a 0,05° (reticolo analogo a quello previsto per le NTC 2008);
- nella predisposizione di cartografie delle frequenze naturali (per gli studi territoriali "livello 1");
- nello stralcio degli approfondimenti di "livello 3" per la realizzazione di opere di rilevante interesse pubblico.

Per quanto riguarda gli <u>approfondimenti di "livello 3</u>" espletati per il Comune di Faenza, le analisi elaborate risultano complessivamente coerenti con i contenuti della DGR 2193/2015 in quanto:

- 1. le analisi di Risposta Sismica Locale numerica approfondiscono la caratterizzazione dell'amplificazione semplificata ricavabile dagli abachi aggiornati. Gli accelerogrammi utilizzati per le modellazioni numeriche di RSL sono stati scalati tenendo già conto del reticolo INGV. Tuttavia, non sono stati stimati i valori di FA SI per l'intervallo di periodo T compreso tra 0,5 s e 1,5 s;
- 2. le verifiche di liquefazione sono state eseguite secondo i criteri metodologici congrui con gli indirizzi regionali riportati nella DGR 2193/2015, inoltre considerando gli input di scuotimento (Pga) ricavati dalla modellazione numerica di RSL.

Per una migliore e immediata comprensione, nella sottostante tabella si riporta la sintesi dei dati di microzonazione sismica relativi all'"AREA VIA REDA 2". In particolare, in coerenza con quanto richiesto dalla DGR 2193/2015, è stato calcolato anche il <u>FA SI (Intensità spettrale di Housner)</u> per il nuovo intervallo di <u>periodo 0.5<T0<1,5s</u>, che risulta importante per edifici particolarmente elevati e/o caratterizzati da periodi di vibrazione più alti.

CLASSIFICAZIONE GEOLOGICA-TECNICA: FREQUENZE NATURALI DEI	CL pi – Tessiture prevalenti nei primi 6 metri: argille inorganiche di media-bassa plasticità, argille limose e argille sabbiose. Ambienti deposizionali di piana inondabile (pi).
TERRENI:	$F_0 \approx 5.60 \text{ hz}$
MICROZONA SISMICA OMOGENEA (MOPS):	Zone stabili suscettibili di amplificazioni locali. Zona 2021 – Conoide terrazzata con successioni irregolari di alluvioni fini più o meno consistenti, con livelli sabbiosi insaturi (AES8), sovrastanti ghiaie e/o ghiaie sabbiose a profondità variabili tra 10-20 m. Substrato sismico alluvionale "non rigido" a profondità ≥ 120 m (Pianura 2).
VELOCITÀ DELLE ONDE DI TAGLIO:	$\underline{\text{Vs30} \approx 323 \text{ m/s}}$
MICROZONAZIONE SISMICA Zone suscettibili di amplificazione locale:	Amplificazione da modelli numerici (shake 2000): FA Pga = 1.6 FA SI = 2 (0.1s < T 0 < 0.5s) FA SI = 2.4 (0.5s < T 0 < 1.0s) FA SI = 2.7 (0.5s < T 0 < 1.5s)
MICROZONAZIONE SISMICA Zone di attenzione per instabilità:	Nessuna (no zona di suscettibilità per liquefazioni)

5.2 Classificazione sismica del sito

Per una verifica di ulteriore dettaglio per quanto concerne la valutazione di risposta sismica locale del sito di Progetto, si sono anche appositamente acquisite, come detto, misure geofisiche con tromografo (v. allegato).

Le misure geofisiche, convertite in attendibili profili <u>Vs (velocità onde di taglio)/Profondità</u>, forniscono un modello sismostratigrafico per una profondità di <u>oltre 30m</u> e sono sintetizzate nei seguenti parametri sismici principali che confermano in termini di maggior sicurezza le risultanze di cui al precedente **par. 5.1**:

- V_s 30 = 257 m/s

- Cc (Fattore di amplificazione sismica) DGR 2193/2015 =

Vs30	150	200	250	300	350	400
F.A. P.G.A	1.6	1.6	1.6	1.6	1.6	1.5
F.A SI1	1.9	1.9	1.9	1.8	1.7	1.6
F.A SI2	2.9	2.8	2.5	2.3	2.1	2.0
F.A SI3	3.3	3.1	2.7	2.4	2.2	2.0

- St (Fattore di amplificazione topografica) = 1 (T = 1)

Per il sito di Progetto si prospetta quindi <u>con buona attendibilità</u>, considerando anche la buona coerenza tra sismostratigrafia e stratigrafie penetrometriche, la seguente classificazione dei terreni di fondazione ai sensi del **DM 17/01/2018**:

categoria C: Depositi di sabbie e ghiaie mediamente addensate e/o di argille di media consistenza, con spessore variabile da diverse decine fino a centinaia di metri, caratterizzati da valori di V_s 30 tra 180-370m/s (15 < Npt < 50)

5.3 Valutazione del rischio di liquefazione.

A ulteriore verifica per quanto concerne la valutazione del rischio di liquefazione dei terreni dell'"AREA VIA REDA 2" in caso di sisma, si ritiene opportuno, innanzitutto, considerare alla seguente descrizione concettuale (Quaderni de "La Ricerca Scientifica", n.114, C.N.R. 1986):

Col termine liquefazione si intende generalmente la perdita di resistenza dei terreni saturi sotto sollecitazioni di taglio cicliche o monotoniche, in conseguenza delle quali il terreno raggiunge una condizione di fluidità pari a quella di un liquido viscoso.

Ciò avviene quando la pressione dell'acqua nei pori aumenta progressivamente fino ad eguagliare la pressione totale di confinamento e quindi allorché gli sforzi efficaci, da cui dipende la resistenza al taglio, si riducono a zero. Questo fenomeno si verifica soprattutto nelle sabbie fini e nei limi saturi di densità da media a bassa e a granulometria piuttosto uniforme. [...] I casi di liquefazione dovuti a terremoti riscontrati nella realtà riguardano soprattutto depositi fluviali e marini recenti, terreni di riporto sabbiosi, depositi deltaici, bordi di terrazzi alluvionali, e in genere sedimenti recenti di notevole spessore costituiti da materiali granulari saturi non consolidati e a granulometria uniforme.

Quindi, già solo considerando che il primo sottosuolo dell'"AREA VIA REDA 2" è costituito da terreni ad abbondante frazione fine e discretamente coesivi e resistenti (v. grafici penetrometrici), si può ragionevolmente escludere il rischio di liquefazione dei medesimi in caso di sisma, a conferma delle risultanze di cui al par. 5.1 (v. anche D.M. 17/01/2018, par. 7.11.3.4.2).

In ogni caso a maggior supporto progettuale è di seguito fornita anche una verifica analitica alla liquefazione il cui risultato è così sintetizzabile :

- potenziale alla liquefazione (PL) = 0

In particolare, per la verifica si è proceduto in base al **metodo di Robertson e** Wride (1997), che parte dai risultati delle CPT, per giungere a un fattore di sicurezza calcolato sulla stima dei seguenti parametri : $FS = (CRR / CSR) \cdot MSF \ge 1,25$

CRR = resistenza ciclica del terreno

CSR = rapporto tensionale ciclico

MSF = fattore di scala della magnitudo = 1,69 (5,5) - 1,48 (6,0) - 1,30 (6,5) - 1,14 (7,0) - 1,00 (7,5) - 0,88 (8,0)

 $(q_{c1N})_{cs} < 50 \rightarrow CRR_{7.5} = 0.833[(q_{c1N})_{cs}/1000] + 0.05$

 $50 \le (q_{c1N})_{cs} \le 160 \rightarrow CRR_{7.5} = 93[(q_{c1N})_{cs}/1000]^3 + 0.08$

(q_{c1N})_{cs} resistenza penetrometrica in sabbia normalizzata alla pressione di 100 kPa

 $CSR = 0.65 \cdot (a_{max} / g) \cdot \sigma_v / \sigma'_v \cdot r_d$

Amax = accelerazione massima al p.c.

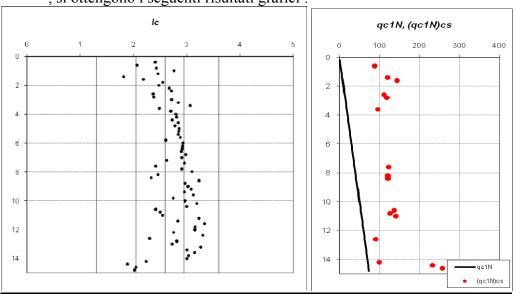
 $G = accelerazione di gravita (9,8 m/s^2)$

 $\sigma_v = \sigma_v = \rho_v = \rho_v$

Rd = coefficiente in funzione della profondità

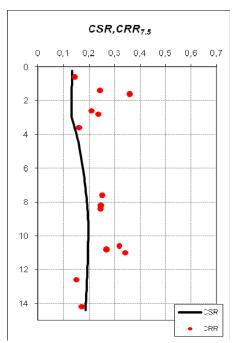
Inserendo quindi in apposito foglio di calcolo i seguenti parametri :

A max = 0.2063

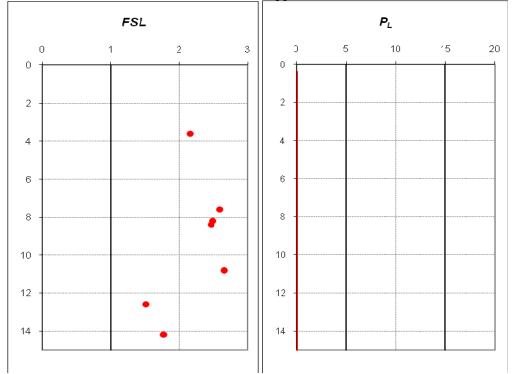

profondità falda = 3m

 γ terreno = 1,85 t/mc

 γ acqua = 1,0 t/mc


M (magnitudo) = 6.14

, si ottengono i seguenti risultati grafici :



Ic = indice classificazione terreno proposto da Robertson (1990)

qc1N = resistenza penetrometrica di punta in sabbia normalizzata alla pressione di 100 kPa

FSL = fattore sicurezza liquefazione

PL = potenziale liquefazione

6 - CONCLUSIONI.

A conclusione di una <u>analisi geologica geologico-tecnica e del rischio sismico</u>, adeguatamente supportata da <u>informazioni geognostiche e geofisiche</u>, si ritiene di aver definito positivamente, e con sufficiente attendibilità, la fattibilità per l'edificazione a uso produttivo/artigianale prevista dal <u>PIANO PARTICOLAREGGIATO relativo alla SCHEDA PRG n. 37 "AREA VIA REDA 2" – COMPARTI 1-4</u> (Comune di Faenza – RA), il quale interessa una superficie di circa 2,7ha alla periferia est di Faenza (v. PROGETTO dello Studio CAVINA-MONTEVECCHI-PAGANI di Faenza e TAVV. 1, 2 e 3).

In generale si è accertato che l'"AREA VIA REDA 2" corrisponde con una porzione pianeggiante e morfostratigraficamente omogenea del semiconoide destro del sistema F. Lamone e T. Marzeno (*terrazzo del Borgo Durbecco*), i cui terreni di antica deposizione fluviale non evidenziano caratteristiche geometriche e idrogeologiche tali da condizionare e/o pregiudicare "normali" interventi urbanistico/edificatori.

Nel dettaglio i risultati geognostici hanno documentato una buona omogeneità e qualità geomeccanica complessiva dei terreni del primo sottosuolo per l'intera "AREA VIA REDA 2", i quali sono costantemente caratterizzati da valori medi di Rp ≥ 18daN/cmq e quindi possono considerarsi senz'altro idonei per fondazioni superficiali.

Per quanto concerne l'idrogeologia sotterranea si stima che la profondità minima raggiunta dal livello piezometrico negli ultimi secoli, nei periodi climatici molto piovosi, abbia comunque oscillato a profondità di oltre -3/-3,5m.

In sintesi, per gli assetti fondali dei fabbricati produttivo/artigianali in progetto all'interno dell' "AREA VIA REDA 2", si prospetta il seguente quadro di riferimento preliminare :

- <u>fondazioni nastriformi e/o a plinti</u> <u>con piano di appoggio a profondità minima pari a -1,5m:</u>

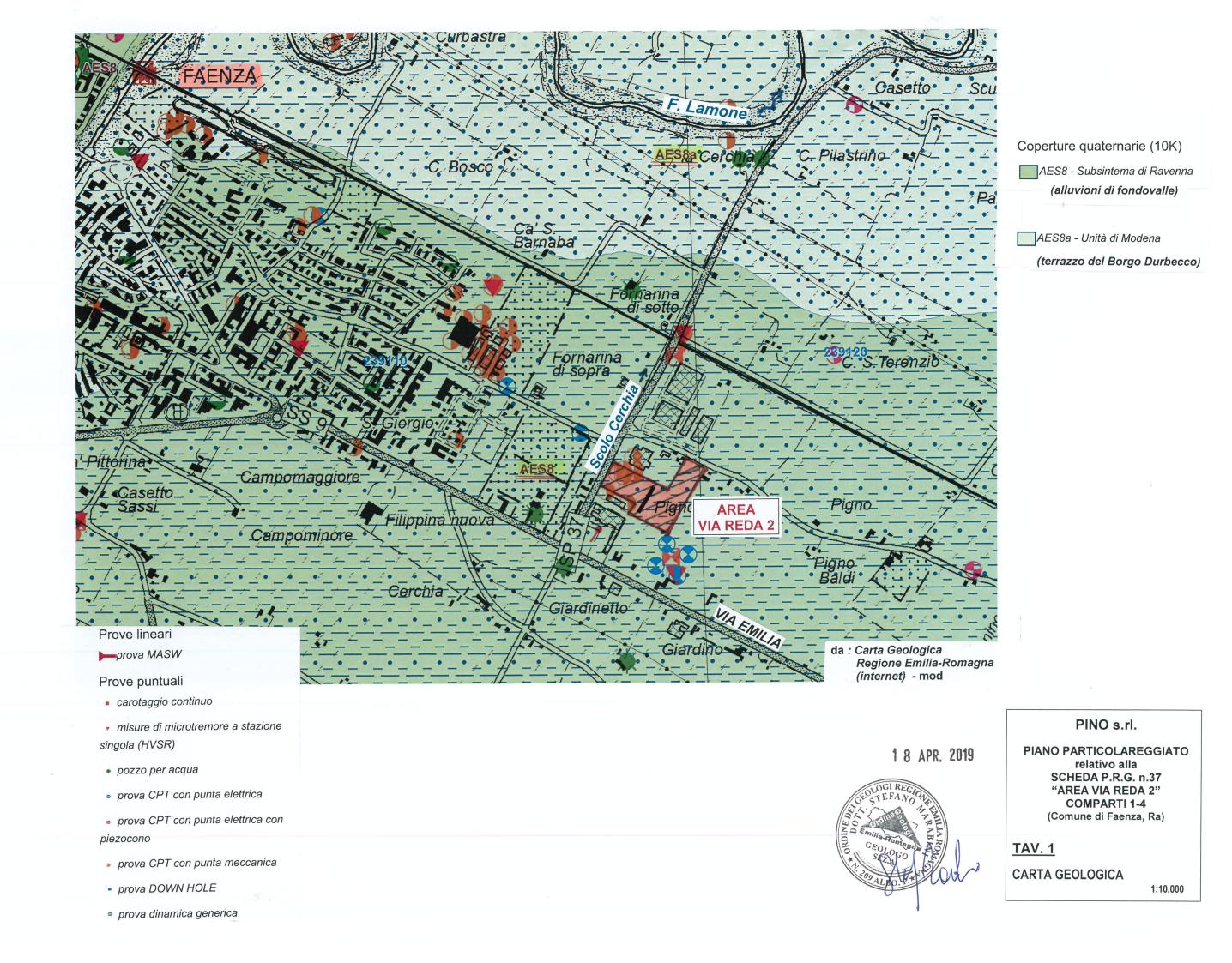
P.Amm. (Pressione Ammissibile) = 1,7 daN/cmq (equivalente a Pressione SLU ≈ 2,5 daN/cmq)

- <u>fondazioni a platea</u> <u>con piano di appoggio a profondità di -3/3,5m</u>:

P.Amm. (Pressione Ammissibile) massima = 1,25 daN/cmq (equivalente a Pressione SLU ≈ 1,9 daN/cmq)

Per quanto concerne la valutazione del rischio sismico dell'area di studio, si prospettano preliminarmente i seguenti parametri:

- Categoria sismica del suolo = C $(V_s 30 = 257 \text{ m/s})$


- Cc (Fattore di amplificazione sismica):

Vs30	150	200	250	300	350	400
F.A. P.G.A	1.6	1.6	1.6	1.6	1.6	1.5
F.A SI1	1.9	1.9	1.9	1.8	1.7	1.6
F.A SI2	2.9	2.8	2.5	2.3	2.1	2.0
F.A SI3	3.3	3.1	2.7	2.4	2.2	2.0


- St (Fattore di amplificazione topografica) = 1 (T = 1).

Infine, si rammenta che sono in ogni caso demandati alla fase di progettazione esecutiva dei singoli fabbricati produttivo/artigianali, in ottemperanza alla Normative Tecniche vigenti (D.M. 17/01/2018, DGR 2193/2015), gli approfondimenti geologicotecnici per la determinazione puntuale dei parametri di fondazione.

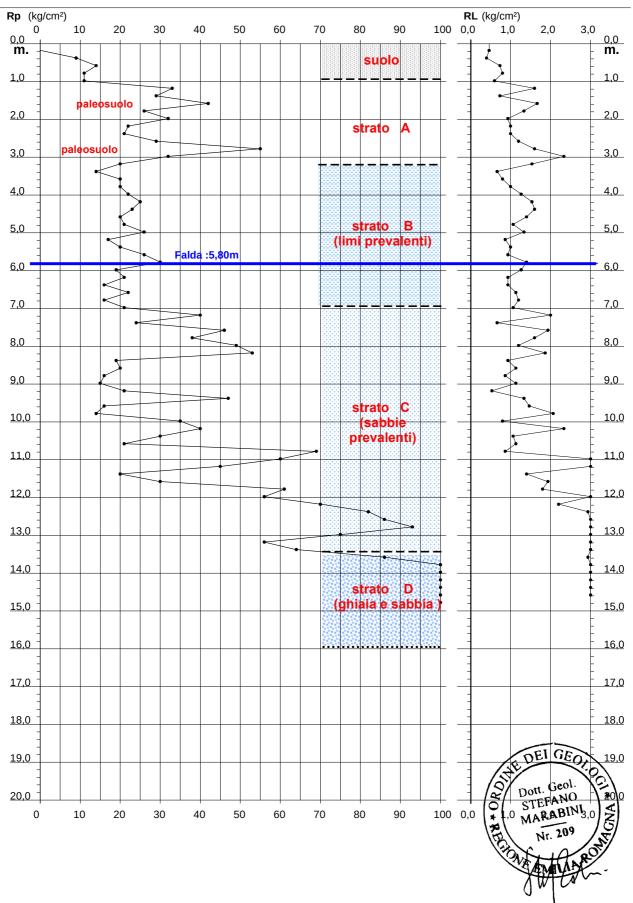
1 8 APR. 2019

PINO s.rl.

PIANO PARTICOLAREGGIATO relativo alla SCHEDA P.R.G. n.37 "AREA VIA REDA 2" COMPARTI 1-4 (Comune di Faenza, Ra)

TAV. 3

SEZIONE GEOLOGICO-TECNICA

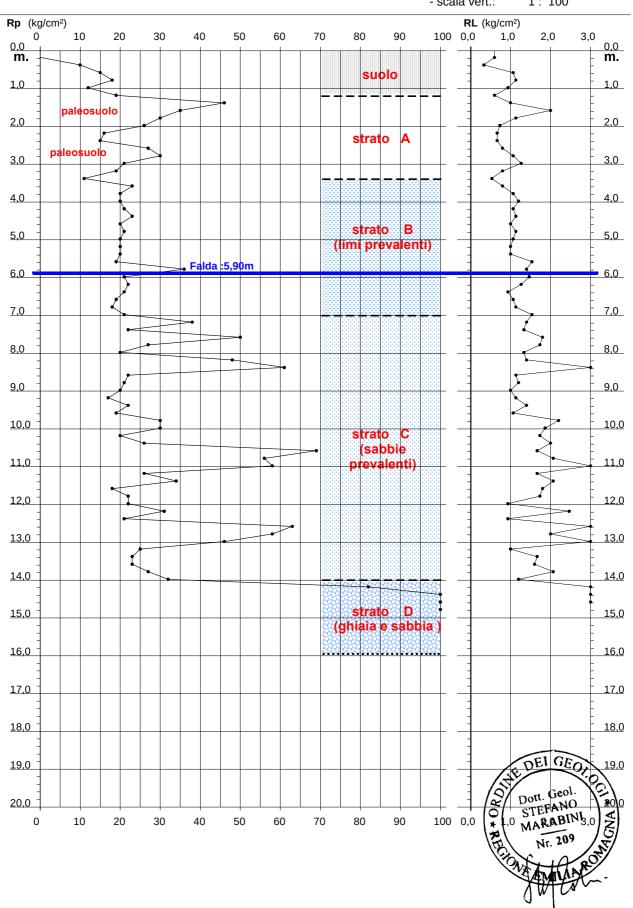

1:1.000

CPT 1

committente : Dott. Geol. Stefano Marabini
 lavoro : progetto urbanistico
 località : area via Reda 2 , Faenza (RA

progetto urbanistico - qu area via Reda 2 , Faenza (RA) - pr

- data : 11/03/2019
- quota inizio : Piano Campagna
- prof. falda : 5,80 m da quota inizio

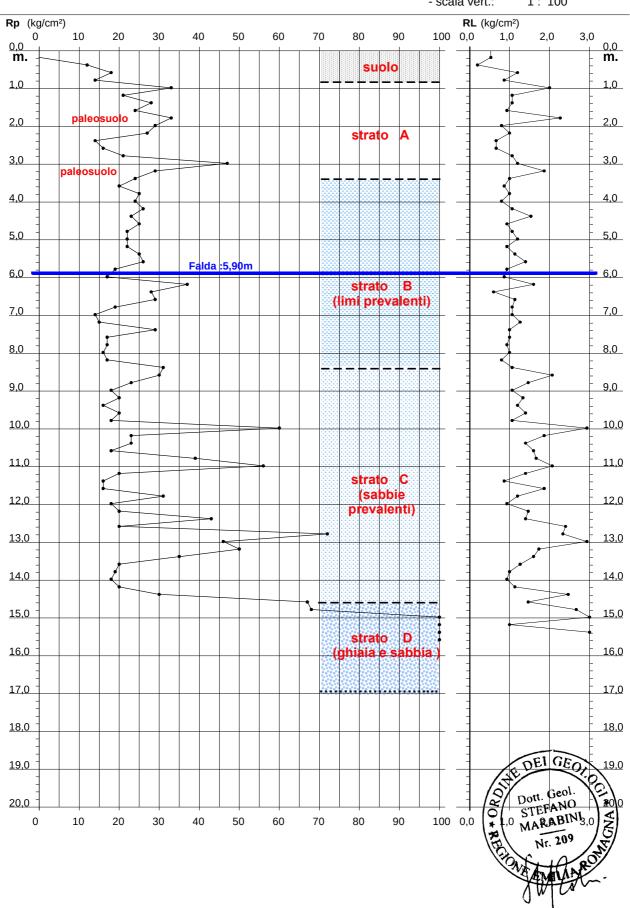


CPT 2

- committente : Dott. Geol. Stefano Marabini - lavoro : progetto urbanistico

- località : area via Reda 2, Faenza (RA) - data : 11/03/2019 - quota inizio: Piano Campagna

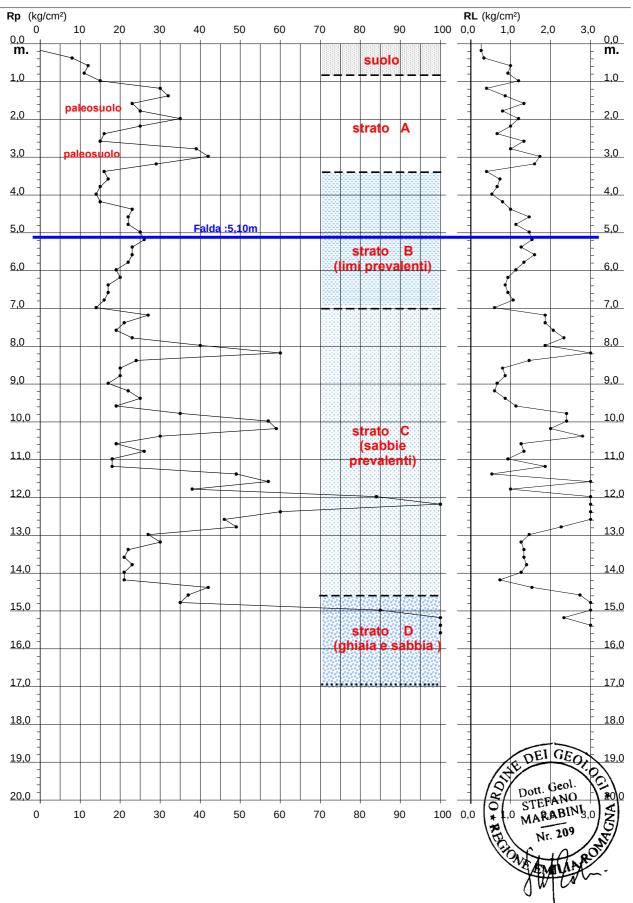
- prof. falda: 5,90 m da quota inizio



CPT 3

- committente : Dott. Geol. Stefano Marabini - lavoro : progetto urbanistico

- località : area via Reda 2, Faenza (RA) - data : 11/03/2019

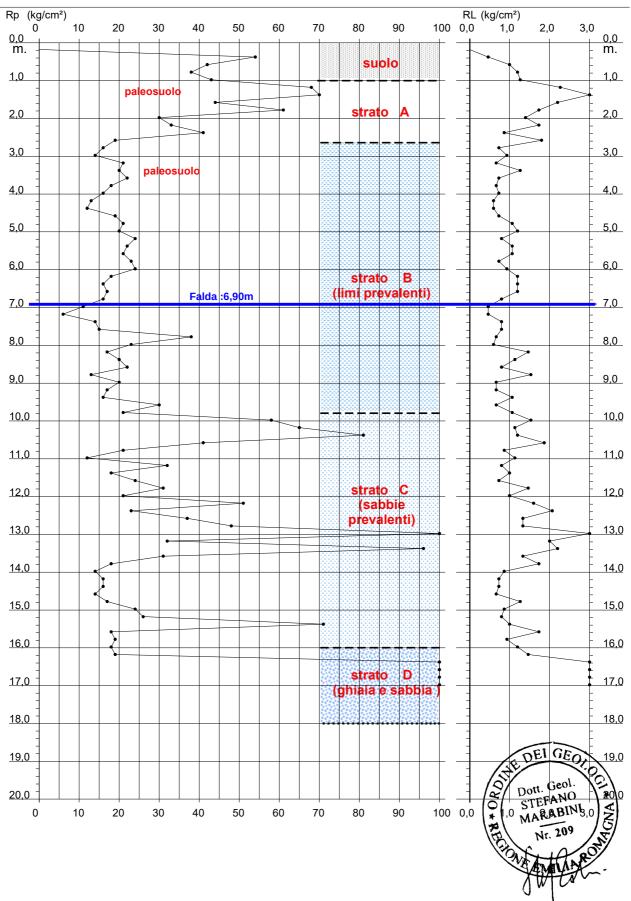

- quota inizio: Piano Campagna - prof. falda: 5,90 m da quota inizio

CPT 4

committente : Dott. Geol. Stefano Marabini
 lavoro : progetto urbanistico
 località : area via Reda 2 , Faenza (RA)

- data : 11/03/2019- quota inizio : Piano Campagna- prof. falda : 5,10 m da quota inizio

CPT 2/08


- committente : dr.geol. Marabini Stefano - lavoro : Piano particolareggiato

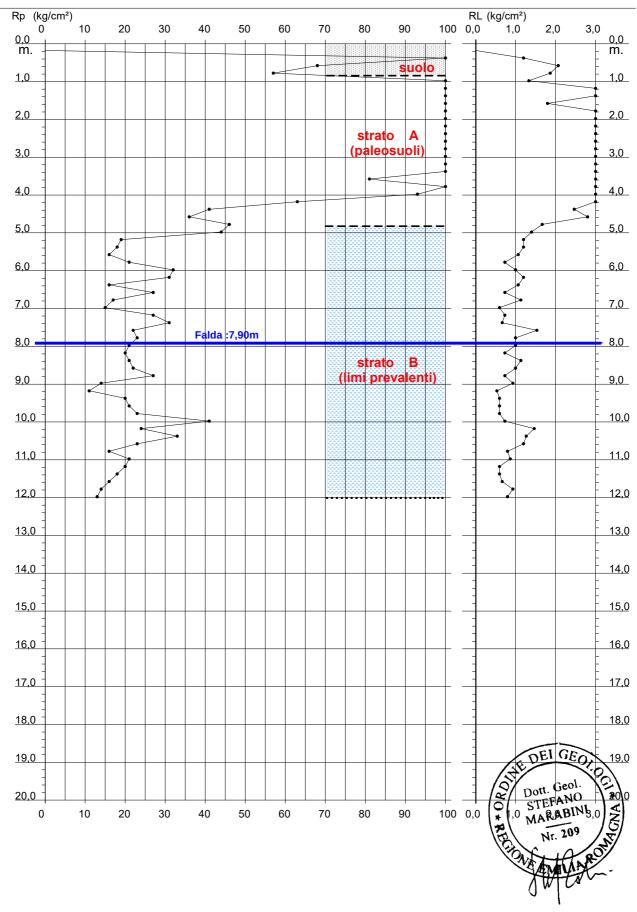
- località : via Emilia, via Reda - Faenza (RA)

- data : 03/ - quota inizio : Pia

- prof. falda :

03/09/2008 Piano Campagna 6,90 m da quota inizio

CPT 5/08

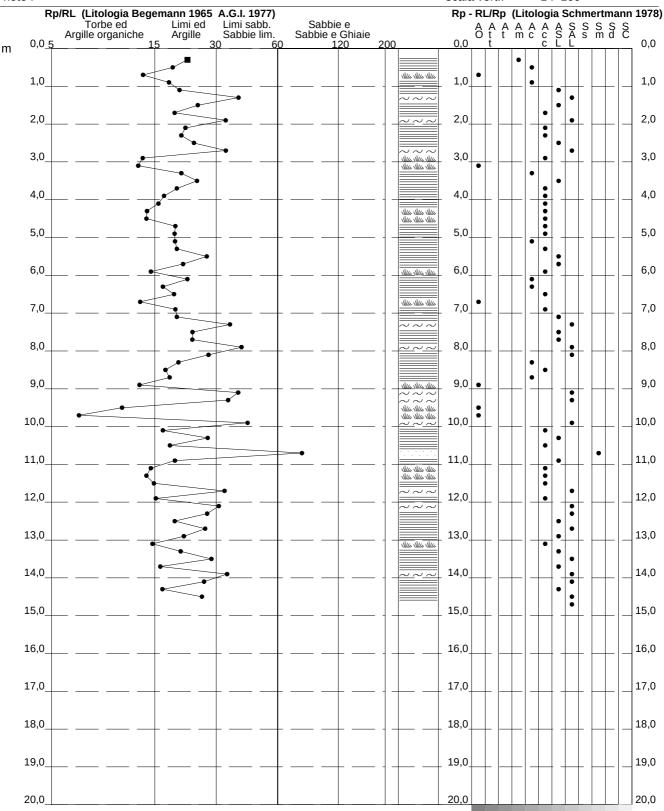

- committente : dr.geol. Marabini Stefano - lavoro : Piano particolareggiato

- località : via Emilia, via Reda - Faenza (RA)

- data : - quota inizio :

- prof. falda :

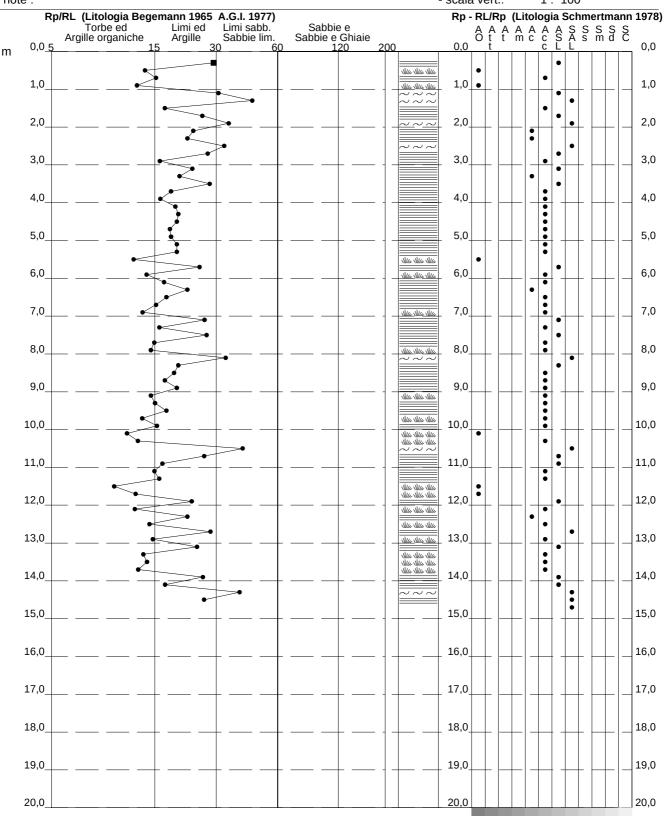
03/09/2008 Piano Campagna 7,90 m da quota inizio


PROVA PENETROMETRICA STATICA VALUTAZIONI LITOLOGICHE

CPT 1

2.010496-071

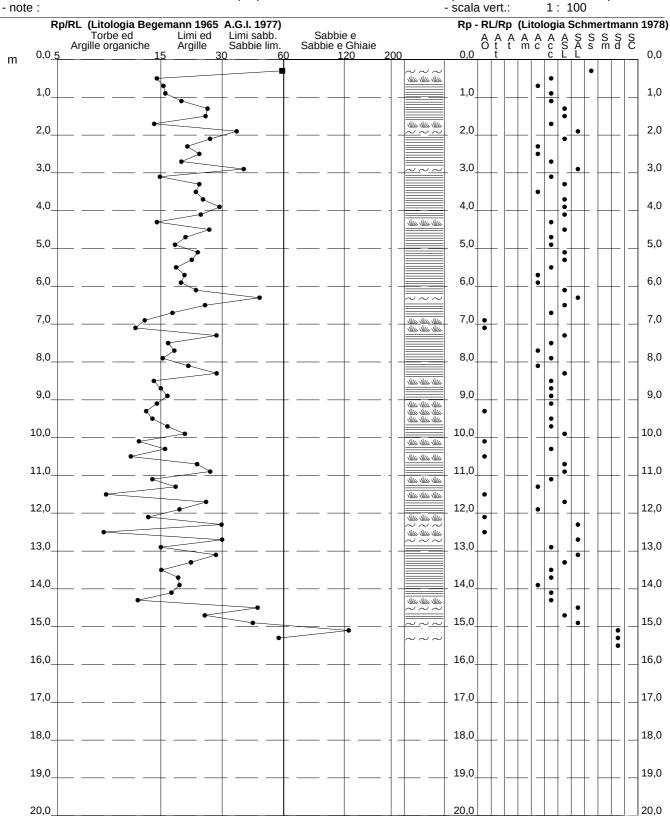
- committente : Dott. Geol. Stefano Marabini - data : 11/03/2019
- lavoro : progetto urbanistico - quota inizio : Piano Campagna
- località : area via Reda 2 , Faenza (RA) - prof. falda : 5,80 m da quota inizio


PROVA PENETROMETRICA STATICA VALUTAZIONI LITOLOGICHE

CPT 2

2.010496-071

- data : Dott. Geol. Stefano Marabini 11/03/2019 - committente : - lavoro progetto urbanistico - quota inizio : Piano Campagna - prof. falda : 5,90 m da quota inizio località area via Reda 2, Faenza (RA) - note : - scala vert.: 1: 100

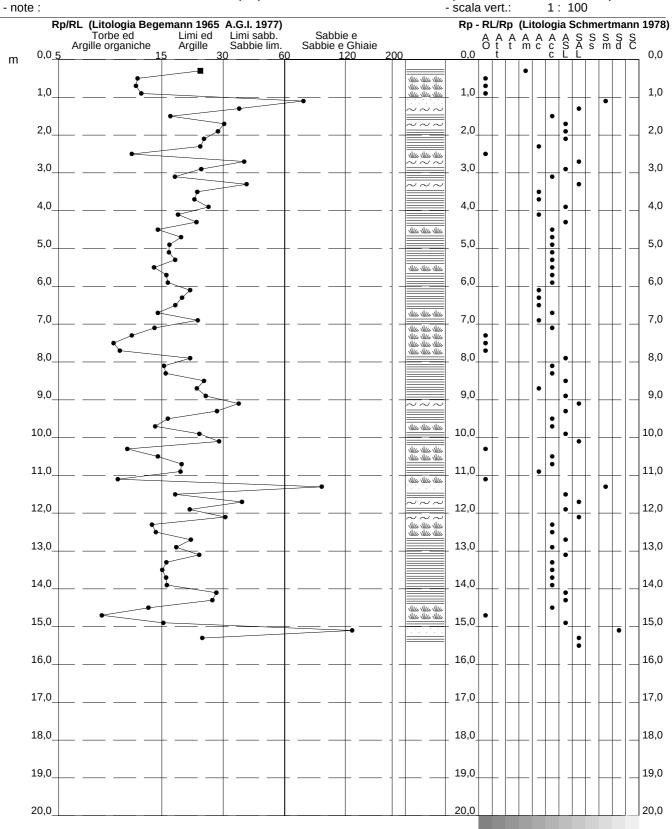


PROVA PENETROMETRICA STATICA VALUTAZIONI LITOLOGICHE

CPT 3

2.010496-071

- committente : Dott. Geol. Stefano Marabini - data : 11/03/2019
- lavoro : progetto urbanistico - quota inizio : Piano Campagna
- località : area via Reda 2 , Faenza (RA) - prof. falda : 5,90 m da quota inizio



PROVA PENETROMETRICA STATICA VALUTAZIONI LITOLOGICHE

CPT 4

2.010496-071

committente : Dott. Geol. Stefano Marabini
 lavoro : progetto urbanistico
 località : area via Reda 2 , Faenza (RA)
 data : 11/03/2019
 quota inizio : priof. falda : 5,10 m da quota inizio

PROVA PENETROMETRICA STATICA TABELLA PARAMETRI GEOTECNICI

CPT 1

2.010496-071

Dott. Geol. Stefano Marabini - data : 11/03/2019 - committente : - lavoro : - località : progetto urbanistico - quota inizio : Piano Campagna - prof. falda : area via Reda 2, Faenza (RA) 5,80 m da quota inizio

- iocalita - note :	: ar	ea via	Rec	ıa Z ,	⊢aenz	za (RA	۹)							r. raii gina :			5,80 r 1	n aa	quota	a inizio
11010 .					NA.	URA	COES	211/4			++++		VATU		\vdash	\II II	ARE	++++		-
Drof	Do Do/DI	Notura	Y'		Cu	OCR		Eu25	HHHH		1111	++++	+++	+++	+++	+++		++++		
Prof. m	Rp Rp/Rl kg/cm² (-)	Natura Litol.	t/m³	p'vo kg/cm²	kg/cm ²	(-)	kg/c		Mo kg/cm²	Dr %	ø1s (°)	ø2s (°)	ø3s (°)	ø4s (°)	ødm (°)	(°)	Amax/g (-)	E'50 kg/	E'25 cm² kg	Mo /cm²
0,20 0.40	 9 22	??? 2////	1,85 1,85	0,04 0,07	0.45	60,0	 77	 115	38											
0,60	14 19	2////	1,85	0,11	0,64	55,7	108	162	48											
0,80 1,00	11 14 11 18	2/// 2////	1,85 1,85	0,15 0,19	0,54 0,54	31,4 23,8	91 91	137 137	42 42											
1,20 1,40	33 21 29 40	4/:/: 3::::	1,85 1,85	0,22 0,26	1,10	46,4	187	281	99	71 62 72	38 37	40 39	42 41	44 43	39 38 39	29 29	0,161 0,137	55 48 70	83 73 105	99 87
1,60 1,80	42 25 26 19	4/:/: 4/:/:	1,85 1,85	0,30 0,33	1,40 0,93	43,8 22,6	238 158	357 237	126 78	53	38 35	40 38	42 40	44 42	36	29 30 28	0,165 0,110	43	65	126 78
2,00	32 34 22 22	3:::: 4/:/:	1,85 1,85	0,37 0,41	0,85	15,7	144	216	66	57 42	36 34	38 36	40 39	43 41	36 34	29 28	0,123 0,084	53 37	80 55	96
2,40 2,60	32 34 22 22 21 21 29 24	4/:/: 4/:/:	1,85 1,85	0,44 0,48	0,82 0,98	13,6 15,3	140 167	210 251	63 87	38 47	36 34 33 35 37	36 37	38 39	41 42	33 34	27 29	0,076 0,097	35 48	53 73	63 87
2,80 3,00	55 34	3:::: 4/:/:	1,85 1,85	0,52 0,55	1,07	14,2	 181	 272	96	67 47	37 35 32	39 37 35	41 39 37	43 42	37 34	29 28 27 29 31 29 27	0,152 0,097	92 53 33	138 : 80	165 96
3,20 3,40	20 13 14 21	4/:/: 2////	1,85 1,85	0,59 0,63	0,80 0,64	9,1 6,4	141 163	211 245	60 48	29	32	35	37	42 40	31		0,057		50 	60
3,60 3,80	32 14 20 13 14 21 20 25 20 20	4/:/: 4/:/:	1,85 1,85	0,67 0,70	0,80 0,80	7,9 7,4	160 173	241 260	60 60	27 25	32 32	34 34	37 37	40 40	30 30	27 27	0,051 0,048	33 33	50 50	60 60
4,00	22 17 25 16	4/:/: 4/:/:	1,85 1,85	0,74 0,78	0,85 0,91	7,4 7,6	182 189	273 284	66 75	27 31	32 32 32 32 32	34 34 35 35 34	37 38	40 40	30 31	28	0,052 0,059	37 42	55 63	66 75
4,40 4,60	23 14	4/:/: 4/:/:	1,85 1,85	0,81 0,85	0,87 0,80	6,8 5,8	206 227	310 341	69 60	27	32 31	34 34	37	40 40	30	28 27	0.051	38	58 50	69
4,80 5,00	20 14 21 20 26 19	4/:/: 4/:/:	1,85 1,85	0,89 0,93	0,82 0,93	5,7 6,3	238 241	358 361	63 78	21 21 28	31 31 32	34 34 35	37 37 37	40 40	29 29 30	28 28 27 27 28	0,039 0,040 0,053	33 35 43	53 65	60 63 78
5,20 5,40	17 20 20 20	2//// 4/:/:	1,85 1,85	0,96 1,00	0,72 0,80	4,4 4,8	269 277	403 416	54 60	17	30	33	36	39	28	27	0,032	33	 50	60
5,60 5,80	26 28 30 21	4/:/: 4/:/:	1,85 0.96	1,04 1,06	0,93 1,00	5,5 5,9	281 281	422 422	78 90	25 29	31 32	34 35	37 37	40 40	29 30	28 29	0,047 0,056	43 50	65 75	78 90
6,00 6,20	19 15 21 22 16 17	2//// 4/:/:	0,99 0,93	1,08 1,09	0,78 0,82	4,2 4,4	300 305	450 458	58 63 52	16	30	33	36	39	28	27	0,031	35	53	63 —
6,40 6,60	22 19	2//// 4/:/:	0,96 0,93	1,11 1,13	0,70 0,85	3,5 4,4	314 316	471 474	66	17	30	33	36	39	28	28	0,032	37	55	66
6,80 7,00	21 20	2//// 4/:/:	0,96 0,93	1,15 1,17	0,70 0,82	3,3 4,1	323 326	484 489	52 63	15	30	33	36	39	27	27	0,028	35	53	63
7,20 7,40	40 20 24 36	4/:/: 3::::	1,00 0,86	1,19 1,21	1,33	7,2	295	442	120	36 18	33 31	33 36 33	38 36	41 39	31 28	30 28 31 30 31	0,071 0,035	35 67 40 77	60	120 — 72
7,60 7,80	46 24 38 24	4/:/: 4/:/:	1,01 0,99	1,23 1,25	1,53 1,27	8,3 6,4	292 323	438 484	138 114	40 33	34 33 34	36 35 36	39 38	41 41	32 30	30	0,081 0,065	63	95 :	138 114
8,00 8,20	49 41 53 28	3:::: 4/:/:	0,92 1,01	1,26 1,28	1,77	9,3	307	460	159	42 44	34	36	39 39	41 42	32 32	31	0,084 0,089	82 88		147 — 159 —
8,40 8,60	19 20 20 18	2//// 4/:/:	0,99	1,30 1,32	0,78 0,80	3,3 3,3	365 371	547 557	58 60	10	29	32	35	39	26	27	0,020	33	50	60
8,80 9,00	16 18 15 13	2/// 2////	0,96 0,95	1,34 1,36	0,70 0,67	2,8 2,6	356 350	534 525	52 50											
9,20 9,40	21 39 47 35 16 11	3::::	0,85 0,91	1,38 1,40						11 38	29 33	33 36	36 38	39 41	26 31	27 31	0,021 0,075	35 78	53 118	63 — 141
9,60 9,80	14 7	2///	0,96 0,94	1,42 1,43	0,70 0,64	2,6 2,3	365 346	547 520	52 48											
10,00 10,20	35 44 40 17	3:::: 4/:/:	0,89 1,00	1,45 1,47	1,33	5,5	398	597	120	27 31	32 32	34 35	37 38	40 40	29 30	29 30 29 27 32 32 31 27 29 32 31 32	0,051 0,060	58 67	100	105 — 120 —
10,40 10,60	30 28 21 19	4/:/: 4/:/:	0,96 0,93	1,49 1,51	1,00 0,82	3,8 2,9	420 410	630 615	90 63	21 8	31 29 35	34 32 37	37 35 39 39	40 39	28 26	27	0,040 0,018	50 35	75 53	90 63
10,80 11,00	69 80 60 20	3:::: 4/:/:	0,95 1,02	1,53 1,55 1,57	2,00	8,6	367	551	180	49 44	35	36	39	42 41	33 32	32	0,101 0,089	115 100 75	150	207 180
11,20 11,40	45 15 20 14	4/:/: 4/:/:	1,00 0,93	1,59	1,50 0,80	5,9 2,7	417 415	625 622	135 60	34 5	34 33 29 31	36 35 32	38 35	41 38 40	30 25 28	31 27	0,065 0,013	33	50	135 — 60
11,60 11,80	30 16 61 34	4/:/: 3::::	0,96 0,94	1,61 1,63	1,00	3,5	453	679	90	19 43	34	34 36	36 39	41	28 32 31	29 32	0,036 0,087	50 102	75 153	90 183
12,00 12,20	56 16 70 32	4/:/: 3::::	1,01 0,95	1,65 1,67	1,87	7,3 	406	609	168	40 47	34 35	36 37	39 39	41 42	32	31 32	0,080 0,097	93 117	175	168 — 210 —
12,40 12,60	82 28 86 20	4/:/: 4/:/:	1,04 1,04	1,69 1,71	2,73 2,87	11,5 12,0	465 487	697 731	246 258	52 54	35 36	38 38	40 40	42 42	33 33	33 33	0,110 0,114	137 143	215	246 258
12,80 13,00	86 20 93 27 75 22 56 15 64 21	4/:/: 4/:/:	1,04 1,03	1,73 1,75	3,10 2,50	13,0 9,8	527 426	791 639	279 225	56 48	36 35	38 37	40 39	42 42 42	34 32 31	33 32	0,120 0,100	155 125	188	279 225
13,20 13,40	56 15 64 21	4/:/: 4/:/:	1,01 1,02	1,77 1,79	1,87 2,13	6,7 7,8	451 432	676 648	168 192	38 42	36 35 33 34 35 36 37	36 36	38 39	41 41	31	31 32	0,076 0,086	93 107	160	168 — 192
13,60 13,80	86 29 100 17	4/:/: 4/:/:	1,04 1,05	1,81 1,83	2,87 3,33	11,2 13,3	487 567	731 850	258 300	52 57	35 36	38 38	40 40	42 43	33 34	33 34	0,110 0,123	143 167	215 2 250 3	258 300
<u>14,00</u> 14,20	130 35 180 27 200 17	3:::: 4/:/:	1,05 1,11	1,85 1,87	6,00		1020	1530	540	66 77	37 39	39 40	41 42	43 44	35	33 33 32 31 32 33 34 35 37 38	0,147 0,180	217 300	325	390 <u> </u>
14,40 14,60	200 17 220 26	4/:/: 4/:/:	1,13 1,13	1,90 1,92	6,67 7,33	26,9 30,2 33,5	1133 1247	1700 1870	600 660	80 83	39 39 40	41 41	43 43	44 45	37 37 38	38 38	0,191 0,200	333 367	500	600 660
14,80	375	3::::	1,15	1,94						100	42	43	45	46	40	40	0,258	625	938 1	

PROVA PENETROMETRICA STATICA TABELLA PARAMETRI GEOTECNICI

CPT 2

2.010496-071

- committente : Dott. Geol. Stefano Marabini - data : 11/03/2019
- lavoro : progetto urbanistico - quota inizio : Piano Campagna
- località : area via Reda 2 , Faenza (RA) - prof. falda : 5,90 m da quota inizio

note:	-							,						- pa	gina	:		1		9000	
						NAT		COE	SIVA				I	NATU	JRA	GRA		ARE .			
Prof.		Rp/RI	Natura	Y' 1	p'vo	Cu	OCR	Eu50	Eu25	Mo	Dr	ø1s	ø2s	ø3s	ø4s	ødm	ømy	Amax/g		E'25	
m 0,20	kg/cm²	(-) 	Litol.	t/m³ 1,85	kg/cm ² 0,04	kg/cm²	(-) 	kg/c	:m² 	kg/cm²	%	(°)	(°)	(°)	(°)	(°)	(°)	(-) 	кg/с	cm² kg 	/cm²
0,40 0,60	10 15	30 14	4/:/: 2////	1,85 1,85	0,07 0,11	0,50 0,67	68,4 59,0	85 113	128 170	40 50	56 	36	38	40	43	38	26	0,121	17	25	30
0,80 1,00	18 12	16 13	2/// 2////	1,85 1,85	0,15 0,19	0,75 0,57	47,7 25,7	128 97	191 146	56 45											
1,20 1,40	19 46	32 46	4/:/: 3::::	1,85 1,85	0,22 0,26	0,78	30,0	132	198	58 	52 78	35 39	37 41	40 42	42 44	36 40	27 31	0,108 0,184	32 77		57 — 138
1,60 1,80	35 30	18 26	4/:/: 4/:/:	1,85 1,85	0,30 0,33	1,17 1,00	34,9 24,8	198 170	298 255	105 90	66 57	37 36	39 38	41 40	43 43	38 36	29 29	0,146 0,123	58 50	75	105 90
2,00 2,20	26 16	35 24	3:::: 2////	1,85 1,85	0,37 0,41	0,70	12,3	118	177	52	50 	35 	37 	40 	42	35 	28	0,104	43	65 	⁷⁸
2,40 2,60	15 27	22 34	2//// 3::::	1,85 1,85	0,44 0,48	0,67	10,4	113	170	50 	45	34	37	39	42	34	28	0,091	45	68	81
2,80 3,00	30 21	28 17	4/:/: 4/:/: 2////	1,85 1,85 1,85	0,52 0,55	1,00 0,82	14,3 10,3	170 140 140	255 210	90 63 58	47 33	35 33 	37 35	39 38 	42 41	34 32	29 27	0,096 0,064	50 35	75 53	90 63
3,20 3,40 3,60	19 11 23	24 21 29	2//// 2//// 4/:/:	1,85 1,85 1,85	0,59 0,63 0,67	0,78 0,54 0,87	8,8 5,1 8,7	173 158	210 259 237	42 69	31	32	 35	38	 41	31	 28	0,061	38	 58	 69
3,80 4,00	20 20	19 17	4/:/: 4/:/: 4/:/:	1,85 1,85	0,70 0,74	0,80 0,80	7,4 6,9	173 186	260 280	60 60	25 24	32 31	34 34	37 37	40 40	30 30	27	0,048 0,046	33 33	50 50	60 60
4,20 4,40	21	20 20	4/:/: 4/:/:	1,85 1,85	0,78 0,81	0,82 0,87	6,8 6,8	198 206	296 310	63 69	25 27	31 32	34 34	37 37	40 40	30 30	27 27 28	0,047 0,051	35 38	53 58	63 — 69
4,60 4,80	23 20 21	20 19	4/:/: 4/:/:	1,85 1,85	0,85 0,89	0,80 0,82	5,8 5,7	227 238	341 358	60 63	21 21	31 31	34 34	37 37	40 40	29 29	27 27	0,039 0,040	33 35	50 53	60 63
5,00 5,20	20 20	19 20	4/:/: 4/:/:	1,85 1,85	0,93 0,96	0,80 0,80	5,2 5,0	253 266	380 398	60 60	19 18	31 30	33 33	36 36	39 39	28 28	27 27	0,035 0,034	33 33	50 50	60 —
5,40 5,60	20 19	20 12	4/:/: 2////	1,85 1,85	1,00 1,04	0,80 0,78	4,8 4,4	277 289	416 434	60 58	17 	30	33	36 	39	28	27	0,032	33	50 	60
5,80 6,00	36 21	26 14	4/:/: 4/:/:	1,85 0,93	1,07 1,09	1,20 0,82	7,2 4,4	266 305	399 457	108 63	35 16	33 30	35 33	38 36	41 39	31 28	30 27	0,069 0,031	60 35	53	108 63
6,20 6,40	22 21	17 22	4/:/: 4/:/:	0,93	1,11 1,13	0,85 0,82	4,5 4,2	310 315	465 473	66 63	17 15	30 30	33 33	36 36	39 39	28 28	28 27	0,033 0,030	37 35	55 53	66 — 63
6,60 6,80 7,00	19 18 21	18 16 14	2//// 2//// 4/:/:	0,99 0,98 0,93	1,15 1,17 1,19	0,78 0,75 0,82	3,8 3,6 4,0	323 330 331	484 495 497	58 56 63	 14	30	33	 36	 39	 27	 27	0,028	 35	 53	 63
7,00 7,20 7,40	38 22	27 16	4/:/: 4/:/: 4/:/:	0,93	1,19 1,21 1,23	1,27 0,85	6,7 4,0	308 343	462 514	114 66	34 15	33 30	35 33	38 36	41 39	31 27 32	30 28	0,028 0,067 0,029	63 37		114 — 66
7,60 7,80	50 27	28 16	4/:/: 4/:/:	1,01 0,95	1,25 1,26	1,67 0,95	9,0 4,4	295 353	443 530	150 81	43 21	34 31	36 34	39 37	41 40	32 28	31 28	0,023 0,086 0,040	83 45		150 81
8,00 8,20	20 48	15 34	4/:/: 3::::	0,93 0,91	1,28 1,30	0,80	3,5	362	542	60	11 40	29 34	33 36	36 39	39 41	27 31	27 31	0,021 0,081	33 80	50	60 144
8,40 8,60	61 22 21	20 19	4/:/: 4/:/:	1,02 0,93	1,32 1,34	2,03 0,85	10,8 3,5	346 378	519 567	183 66	48 13	35 30	37 33	39 36	42 39	33 27	32 28	0,099 0,025	102 37		183 66
8,80 9,00	20	17 20	4/:/: 4/:/:	0,93 0,93	1,36 1,38	0,82 0,80	3,4 3,2	381 383	572 574	63 60	11 9	30 29	33 32	36 35	39 39	27 26	27 27	0,022 0,019	35 33	53 50	63 60
9,20 9,40	17 22	15 16	2//// 4/:/:	0,97 0,93	1,40 1,42	0,72 0,85	2,8 3,3	370 396	555 594	54 66	11	30	33	36	39	27	28	0,023	37	 55	66
9,60 9,80	19 30	18 14	2//// 4/:/:	0,99	1,44 1,45	0,78 1,00	2,9 3,9	388 407	582 611	58 90	21	31	34	37	40	28	29	0,041	50	75	90
10,00 10,20 10,40	30 20 26	16 12 13	4/:/: 4/:/: 4/:/:	0,96 0,93 0,95	1,47 1,49 1,51	1,00 0,80	3,9 2,9	414 402 425	621 603 638	90 60	21 7	31 29 30	34 32	37 35 36	40 39 39	28 26 27	29 27 28	0,040 0,015 0,030	50 33 43	75 50 65	90 60 78
10,40 10,60 10,80	69 56	41 27	4/./. 3:::: 4/:/:	0,95 0,95 1,01	1,51 1,53 1,55	0,93 1,87	3,4 7,9	425 373	560	78 168	16 49 41	35 34	33 37 36	39 39	42 41	33 31	32 31	0,030 0,101 0,083	115 93	173	78 207 168
11,00 11,20	58 26	17 16	4/:/: 4/:/:	1,02 0,95	1,57 1,59	1,93 0,93	8,1 3,2	376 442	563 663	174 78	42 14	34 30	36 33	39 36	41 39	31 27	31	0,085 0,028	97 43		174 78—
11,40 11,60	34 18	16 10	4/:/: 2////	0,98 0,98	1,61 1,63	1,13 0,75	4,1 2,4	449 403	674 605	102 56	23	31	34	37	40	28	28 29	0,044	57		102
11,80 12,00	22 22	13 24	4/:/: 4/:/:	0,93	1,65 1,67	0,85 0,85	2,7 2,7	435 437	652 656	66 66	8 7	29 29	32 32	35 35	39 39	26 26	28 28	0,017 0,016	37 37	55 55 78	66 66
12,20 12,40	31 21	13 22	4/:/: 4/:/:	0,97	1,69 1,70	1,03 0,82	3,4 2,5	474 435	711 652	93 63	19 5	31 29	34 32	36 35	40 38	26 28 25	28 29 27	0,036 0,013	52 35	53	93 — 63
12,60 12,80	63 58	15 29	4/:/: 4/:/:	1,02 1,02	1,72 1,74	2,10 1,93	8,0 7,1	414 435	620 652	189 174	43 40	34 34	36 36	39 39	41 41	31 31 29	32 31	0,086 0,079	105 97	145	189 174
13,00 13,20	46 25	15 25	4/:/: 4/:/:	1,01	1,76 1,78	1,53 0,91	5,3 2,7	483 469	724 703	138 75	31 10	32 29	35 32	38 36	41 39	26	31 28	0,061 0,021	77 42	63	138 — 75
13,40 13,60	23 23	14 14	4/:/: 4/:/:	0,94	1,80 1,82	0,87 0,87	2,5 2,5	459 461	688 691	69 69	7 7	29 29	32 32	35 35	39 39	25 25	28 28	0,016 0,015	38 38	58 58	69 69
13,80 14,00 14,20	27 32 82	13 27 18	4/:/: 4/:/: 4/:/:	0,95 0,97 1,04	1,84 1,86 1,88	0,95 1,07 2,73	2,7 3,1 10,0	486 515 465	730 772 697	81 96 246	12 18 50	30 30 35	33 33 37	36 36 40	39 39 42	26 27 32	28 29 33	0,024 0,034 0,103	45 53 137	68 80 205	81 96 246
14,40 14,60	280 270	40 27	3:::: 4/:/:	1,15 1,13	1,90 1,93	9,00	43,1	1530	2295	810	92 90	41 41	42 42	44 44	45 45	39 39	40 40	0,229 0,224	467 450	700	240 840 810

PROVA PENETROMETRICA STATICA TABELLA PARAMETRI GEOTECNICI

CPT 3

2.010496-071

Dott. Geol. Stefano Marabini - data : 11/03/2019 - committente : - lavoro : - località : progetto urbanistico - quota inizio : Piano Campagna area via Reda 2, Faenza (RA) - prof. falda : 5,90 m da quota inizio

- note :			· · · · · · · · · · · · · · · · · · ·	, 					- pagi	na :		1		•
			NATURA	COESIVA				N	ATU	RA G	RANU	LARE		
Prof. m	Rp Rp/Rl Natura kg/cm² (-) Litol.		u OCR /cm² (-)	Eu50 Eu25 kg/cm²	Mo kg/cm²	Dr %	ø1s (°)	ø2s (°)	ø3s (°)	ø4s (°)	ødm ømy (°) (°)		E'50 kg/	E'25 Mo cm² kg/cm²
0,20 0,40 0,60	??? 12 60 4/:/: 18 15 2////	1,85 0,04 1,85 0,07 0, 1,85 0,11 0,	75 68,4	97 146 128 191	45 56	63 	37 	39 	41 	43 	39 26		20 	30 36
0,80 1,00 1,20 1,40 1,60 1,80 2,00 2,40	14 16 2/// 33 16 4/:/: 21 20 4/:/: 28 26 4/:/: 24 26 4/:/: 29 36 3:::: 27 27 4/:/: 14 21 2///	1,85 0,22 0,1 1,85 0,26 0,1 1,85 0,30 0,1	10 58,3 82 32,3 97 32,5 89 24,8 10 28,0 95 18,1	108 162 187 281 140 210 164 246 151 227 187 281 161 242 108 163	48 99 63 84 72 99 81 48	75 55 61 53 61 54 49	39 36 37 35 37 36 35	40 38 39 38 39 38 39 38	42 40 41 40 41 40 39	44 42 43 42 43 42 43 42	40 29 37 27 37 28 36 28 37 29 36 29 35 28	0,174 0,117 0,134 0,111 0,132 0,114 0,101	55 35 47 40 55 48 45	83 99 53 63 70 84 60 72 83 99 73 87 68 81
2,60 2,80 3,00 3,20 3,40 4,00 4,20 4,40 4,60 4,80 5,00 5,20 5,40	16 24 2/// 21 20 4//: 21 20 4//: 23 30 3:::: 29 16 4//: 20 23 4//: 20 23 4//: 24 30 4//: 25 25 4//: 25 27 4//: 22 21 4//: 22 24 4//: 22 24 4//: 22 24 4//: 25 22 4//:	1,85 0,48 0, 1,85 0,52 0, 1,85 0,55 1,85 0,63 0, 1,85 0,67 0, 1,85 0,74 0, 1,85 0,74 0, 1,85 0,81 0, 1,85 0,81 0, 1,85 0,85 0, 1,85 0,89 0, 1,85 0,93 0,	70 10,0 98 11,8 98 11,8 89 7,9 91 8,7 89 7,9 99 7,8 89 6,8 91 6,8 95 5,9 85 5,9 85 5,9 85 5,6 99 5,6	118 177 140 210	52 63 87 72 60 75 72 78 69 75 66 66 66	34 60 42 34 27 33 30 32 27 28 23 22 21 24	33 36 34 33 32 33 32 32 32 32 31 31 31	35 38 36 35 34 35 35 34 35 34 35 34 34 34 34	38 41 39 38 37 38 38 38 37 37 37 37	41 43 41 41 40 41 40 41 40 40 40 40 40	32 27 36 31 33 29 32 28 30 27 31 28 31 28 31 28 30 28 29 28 29 28 29 28 29 28 29 28	0,067 0,132 0,085 0,067 0,051 0,064 0,058 0,062 0,054 0,043 0,043 0,042 0,040	35 78 48 40 33 42 40 43 38 42 37 37 37	53 63 118 141 73 87 60 72 50 60 63 75 60 72 65 78 65 78 63 75 55 66 55 66 55 66 63 75
5,60 5,80 6,00 6,20 6,20 6,60 6,80 7,00 7,20 7,40 7,60 7,80 8,20 8,20 8,20 9,20 9,20 9,60 9,80 10,00 10,20 10,40 10,60 11,20 11,40	26 19 4/:: 19 20 2/// 37 23 4/:: 28 47 3::: 29 26 4/:: 19 18 2/// 11 13 2//// 11 15 12 2/// 17 17 2/// 17 17 2//// 17 18 2//// 17 17 2//// 18 16 16 2//// 19 4/:: 30 15 4/:: 30 15 4/:: 31 29 4/:: 31 12 2/// 30 15 4/:: 31 12 2/// 31 15 4/:: 31 17 2/// 31 22 4/:: 31 16 4/:: 31 17 2//// 31 18 17 2//// 31 18 17 2//// 31 20 14 4/:: 31 12 2//// 32 12 4/:: 33 12 4/:: 34 12 2//// 35 27 4/:: 37 2//// 38 11 2//// 39 23 4/:: 39 27 4/:: 30 15 4/:: 39 27 4/:: 39 27 4/:: 39 27 4/:: 39 27 4/:: 39 27 4/:: 39 27 4/:: 39 27 4/:: 39 27 4/:: 39 27 4/:: 39 27 4/:: 39 27 4/:: 39 27 4/:: 39 27 4/:: 39 27 4/:: 39 27 4/::	1,85 1,04 0, 1,85 1,07 0,099 1,11 1,099 1,17 0,099 1,17 0,099 1,17 0,096 1,23 0,097 1,24 0,097 1,26 0,097 1,26 0,097 1,32 1,096 1,34 0,098 1,36 0,098 1,36 0,098 1,36 0,098 1,46 0,094 1,40 0,093 1,44 0,094 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	93 5,5 78 4,2 772 3,8 923 7,1 98 5,2 778 3,8 667 3,0 98 4,8 772 3,2 770 2,9 98 4,8 772 3,0 03 4,6 000 4,3 877 2,9 800 3,0 775 2,9 800 3,0 775 2,9 800 3,0 775 2,6 800 3,0 775 2,6 800 3,0 775 2,6 80 3,0 775 2,6	281 422 300 450 308 462 277 415 315 473 329 494 320 480 329 494 340 510 346 519 350 524 348 521 356 535 368 552 375 562 384 561 387 580 385 547 393 590 385 547 393 590 385 547 393 590 415 623 419 628 394 591 428 642 381 571 415 623 382 573	78 58 54 111 87 58 48 50 87 54 52 54 52 54 52 60 69 69 69 56 117 168 60 52	25 	31 33 32 32 31 31 31 30 29 29 29 34 30 30 30 31 31 31 32 31 31 31 31 31 31 31 31 31 31 31 31 31	34 35 34 34 34 34 33 32 32 32 35 33 33 33 34 32 32 33 34 34 34 34 35 36 36 36 37 37 37 37 37 37 37 37 37 37 37 37 37	37 	40 41 40 40 40 40 40 40 39 39 39 39 42 39 42 39 41 38 40 41 41 42 42 43 44 44 45 45 46 47 47 48 48 48 48 48 48 48 48 48 48 48 48 48	29 28 29 29 29 29 29 29 29 29 29 29 29 29 29	0,047	43 	65 78
11,60 11,80 12,00 12,20 12,40 12,60 13,00 13,20 13,40 13,60 14,20 14,20 14,40 14,60 15,00 15,20 15,40	16 9 2/// 31 26 4//- 18 19 2/// 20 14 4//- 43 31 3:::: 20 8 4//- 72 31 3:::: 46 16 4//- 50 29 4//- 20 16 4//- 20 16 4//- 19 19 2/// 19 19 2/// 18 19 2/// 18 19 2/// 18 19 2/// 18 19 2/// 18 19 2/// 18 19 2/// 18 19 30 12 4//- 67 46 3:::: 67 46 3:::: 130 43 3:::: 125 125 3::: 385 58 3:::: 450 3::::	0.96 1,63 0, 0.97 1,65 1, 0,98 1,67 0, 0,93 1,69 0, 0,91 1,71 0,93 1,72 0, 0,95 1,74 0, 1,01 1,76 1, 1,01 1,78 1, 0,98 1,80 0, 0,99 1,84 0, 0,98 1,80 0, 0,98 1,88 0, 0,98 1,90 1, 0,98 1,90 1,	70 2,2 03 3,5 75 2,3 80 2,5 53 5,3 67 5,8 17 3,6 80 2,2 78 2,1	383 575 465 698 407 610 426 638	52 93 56 60 138 150 105 60 58 56 60 90 204 	20 4 30 3 47 31 34 22 2 1 15 42 43 65 63 100 100	31 	32 32 35 32 35 37 35 35 34 31 	35 35 38 35 39 38 37 35 37 35 35 36 39 39 41 41 45 45	38 40 38 42 41 41 41 40 38 	28 29 25 27 29 30 25 27 32 32 29 31 30 31 30 32 31 32 35 35 31 32 31 32 31 32 31 32 31 32 31 32 34 35 40 41	0,015 0,058 0,098 0,097 0,061 0,066 0,041 0,005 0,003 0,029 0,085 0,086 0,143 0,139 0,139 0,258	52 33 72 33 120 77 83 58 33 50 112 113 217 208 642 750	78 93

PROVA PENETROMETRICA STATICA TABELLA PARAMETRI GEOTECNICI

CPT 4

2.010496-071

- committente : Dott. Geol. Stefano Marabini - data : 11/03/2019
- lavoro : progetto urbanistico - quota inizio : Piano Campagna
- località : area via Reda 2 , Faenza (RA) - prof. falda : 5,10 m da quota inizio

- iocalita - note :	. 6	irea via	Reda .	∠ , ⊢aen	za (RA	A)						r. raid gina :	ıa :	5,10 r 1	n aa	quota inizio
note .				NA.	TURA	COESIVA					VATU	-	GRAN			
Prof. m	Rp Rp/F kg/cm² (-)		Y' p' t/m³ kg/	vo Cu cm² kg/cm²	OCR	Eu50 Eu25 kg/cm²	Mo kg/cm²	Dr %	ø1s (°)	ø2s (°)	ø3s (°)	ø4s (°)	ødm øn		E'50 kg/	E'25 Mo cm² kg/cm²
0,20 0,40 0,60 0,80 1,20 1,20 1,40 1,60 1,80 2,40 2,60 3,00 3,20 3,40 3,60 4,00 4,20 4,40 4,60 6,60 7,00 6,20 6,40 6,60 7,20 7,40 7,40 7,70 7,40 7,20 7,40 7,20 7,40 10,60 11,10 11,10 11,10 11,10 11,10 11,10 11,20 11,	8 24 12 12 11 12 15 12 30 75 32 37 25 37 25 31 37 25 16 24 15 11 19 23 22 15 22 19 23 18 24 24 29 18 16 40 21 15 22 15 23 18 24 24 25 17 26 17 27 28 28 18 29 18 20 21 21 19 22 19 23 18 24 24 25 17 26 17 27 28 28 18 29 18 20 21 21 19 22 25 23 18 24 24 25 17 26 17 27 28 28 29 18 29 18 20 21 21 17 22 25 23 18 24 24 25 17 26 17 27 28 28 29 18 29 18 20 21 21 17 22 25 23 18 24 26 25 17 26 17 27 28 28 29 18 29 18 20 21 21 17 22 25 23 18 24 26 17 25 29 27 28 28 29 29 18 20 21 21 11 21 11 22 25 23 26 24 26 26 17 27 28 28 29 29 18 20 21 21 16 22 26 23 26 24 26 26 17 27 28 28 29 29 18 20 21 21 16 22 27 14 24 27 14 26 27 14 27 28 28 28 29 28 29 29 20 21 21 21 22 27 25 29 26 19 27 28 28 29 29 20 20 21 21 21 21 22 22 25 29 29 20 21 21 26 22 27 25 29 26 27 27 28 28 29 29 20 20 21 21 26 22 27 23 26 24 26 27 28 28 29 29 20 20 21 21 21 22 27 23 28 24 26 27 14 28 27 14 28 28 29 29 20 21 21 16 22 27 24 28 27 28 28 29 29 20 20 21 21 22 22 26 23 26 24 26 25 27 26 29 27 28 28 29 29 20 20 21 21 22 22 27 23 26 24 26 25 27 26 29 27 28 28 29 29 20 20 21 21 22 22 26 23 26 24 26 25 26 26 27 27 28 28 29 29 20 20 21 21 22 22 24 23 26 24 26 25 26 26 27 27 28 28 29 29 20 20 21 21 22 22 24 24 26 25 26 26 27 27 28 28 28 29 29 20 21 21 21 22 26 24 26 24 26 25 26 26 27 27 28 28 28 28 28 28 29 28 20 26 21 21 21 22 22 26 24 26 25 26 26 26 27 28	4/: 4/:	1.85 0.0.994 1.1.85 0.0.994 1.1.0.995 1.1.0.995 1.1.0.995 1.1.0.0.995 1.1.0.0.995 1.1.0.0.995 1.1.0.0.998 1.1.0.0.998 1.1.0.0.998 1.1.0.0.998 1.1.0.0.998 1.1.0.0.999 1.1.0.0.0.999 1.1.0.0.0.999 1.1.0.0.0.999 1.1.0.0.0.999 1.1.0.0.0.999 1.1.0.0.0.999 1.1.0.0.0.0.999 1.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	222	51,7 48,7 31,2 24,1 11,0 9,4 20,1 11,0 9,4 20,1 11,0 9,4 4,5 5,2 6,2 5,1 12,7 11,5 4,1 3,5 3,0 3,1 4,1 4,1 4,1 4,1 4,1 4,1 4,1 4	68 102 97 146 91 137 113 170	35 45 42 50 			39 37 38 38 38 36 34 4 34 34 34 34 34 34 34 35 34 35 37 37 37 37 37 37 37 37 37 37 37 37 37	41 41 40 41 40 41 40 41 40 41 40 41 40 41 40 41 40 41 40 40 41 40 40 40 40 40 40 40 40 40 40 40 40 40		38 36 36 37 37 36 37 37 37 37 37 37 37 37 37 37 37 37 37		50 53 38 42 58 58 57 65 70 48 27 	75 90 — 80 96 58 69 65 88 105 126 73 87 40 48 — — — — — — — — — — — — — — — — — —

INDAGINE SISMICA mediante la tecnica del rapporto spettrale H/V a stazione singola eseguita con tromografo digitale TROMINO-Micromed ed elaborazione dei dati mediante software GRILLA-Micromed

CANTIERE: "AREA VIA REDA 2" – Faenza (RA)

LAVORO: Piano Particolareggiato

COMMITTENTE: dr. geol. Stefano Marabini

Faenza, Marzo 2019

Dr. Geol. Bruno Gardegni

INDAGINE GEOFISICA e INTERPRETAZIONE

Scopo della presente relazione è la caratterizzazione sismica dell' "AREA VIA REDA 2" (PRG del Comune di Faenza) posta in ambito di piana alluvionale di conoide, a supporto del "Progetto di Piano Particolareggiato".

Allo scopo è stata eseguita in posizione centrale (**CPT 2**) una indagine sismica utilizzando un tomografo digitale Tromino-Micromed, avvalendosi del metodo di Nakamura sul rapporto spettrale H/, che fornisce una valutazione diretta della Vs₃₀ in base all'individuazione delle discontinuità sismiche e della profondità della formazione rocciosa.

Questa tecnica dei rapporti spettrali o HVSR (Horizontal to Vertical Spectral Ratio) con apparecchio tromografico **TROMINO** permette inoltre di misurare la frequenza caratteristica di risonanza del sito, parametro che è utilizzabile in termini di risposta sismica locale (RSL) per progettare edifici non con la stessa frequenza di risonanza del terreno, in modo da evitare l'effetto di doppia risonanza pericoloso per la stabilità degli edifici.

La Vs₃₀ viene calcolata o meglio stimata mediante un codice di calcolo apposito attraverso il software **GRILLA**, è necessario conoscere la profondità di un riflettore stratigrafico (prova penetrometrica o sondaggio) e riconoscibile dalla curva H/V.

La tecnica HVSR si basa in parte sulla sismica tradizionale dei microtremori, cioè di oscillazioni molto piccole rispetto al sisma; il metodo di acquisizione dei dati è quindi detto passivo in quanto il rumore non è generato come ad esempio dalle esplosioni della sismica attiva.

I dati sono stati acquisiti con un frequenza base di 128 Hz e convertiti in file ASCII mediante il software Grilla, e il rumore sismico è stato registrato nelle sue tre componenti per un intervallo di tempo di 30 minuti, suddiviso in intervalli della durata di 8 sec.

Successivamente si è operato alla costruzione di un modello teorico HVSR e, tramite un algoritmo, all'adattamento della curva sperimentale e quella teorica. Le acquisizioni rispettano le indicazioni del processo SESAME.

Nel presente studio, che sfrutta la teoria di Nakamura che relaziona lo spettro di risposta del substrato roccioso (rapporto spettrale H/V=1) con quello misurato in superficie, la frequenza di risonanza del terreno è regolata dalla formula:

$$f = Vs / 4H$$

dove f è la frequenza e H lo spessore dello strato sismico.

e-mail: brunogard@libero.it - cell.: 3294053135

Di seguito si riportano i dati relativi all'acquisizione sismica:

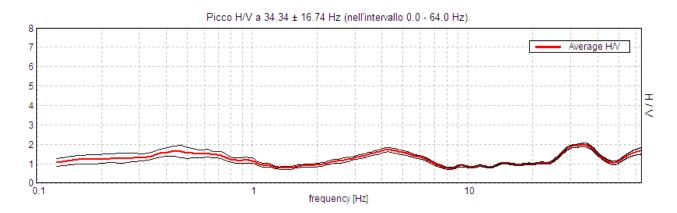
Inizio registrazione: 25/03/19 17:22:23 Fine registrazione: 25/03/19 17:42:23

Nomi canali: NORTH SOUTH; EAST WEST; UP DOWN

Dato GPS non disponibile

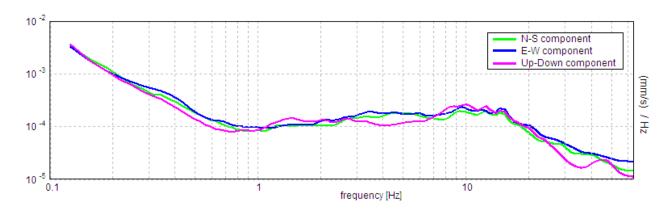
Durata registrazione: 0h20'00". Analisi effettuata sull'intera traccia.

Freq. campionamento: 128 Hz

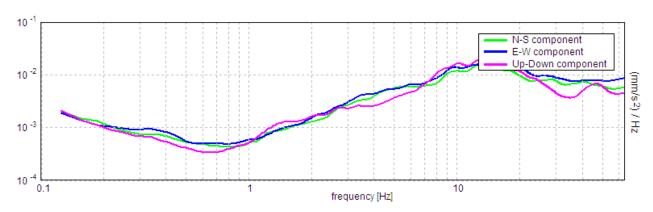

Lunghezza finestre: 20 s

Tipo di lisciamento: Triangular window

Lisciamento: 10%

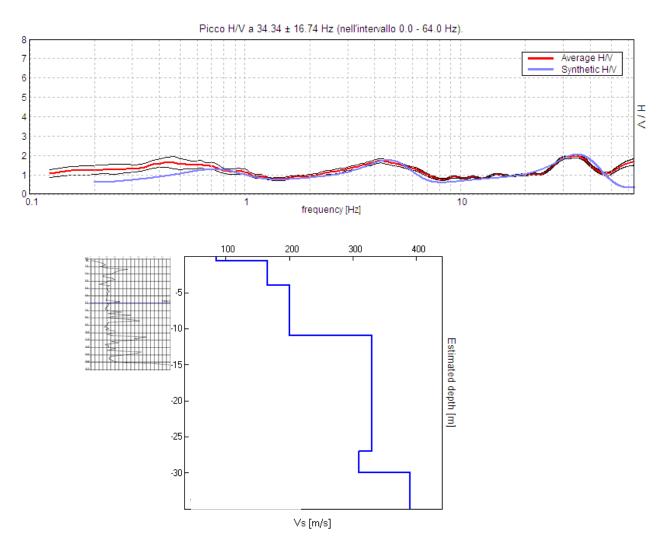

Nel grafico che segue è rappresentata la curva sperimentale H/V frutto dell'elaborazione mediante algoritmo dei microtremori registrato dall'apparecchiatura, in ascissa la frequenza di risonanza del terreno, in ordinata il rapporto H/V:

HORIZONTAL TO VERTICAL SPECTRAL RATIO

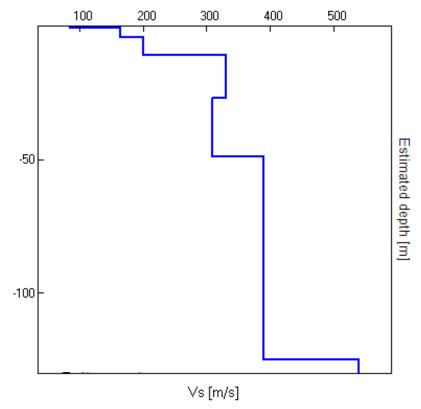


Nei grafici successivi l'andamento della traccia nelle 3 componenti N-S, E-W e verticale:

SINGLE COMPONENT SPECTRA (VELOCITA')



SINGLE COMPONENT SPECTRA (ACCELERAZIONE)


Il grafico sotto rappresenta l'elaborazione della traccia sperimentale da cui si ricava la Vs30 e relativa categoria di suolo, la curva blu è la curva teorica risultato dell'elaborazione, devono essere il più possibile coincidenti;

EXPERIMENTAL VS SYNTHETIC H/V

A seguire uno schema dei sismostrati nei quali è stato suddiviso il sottosuolo, ciascuno caratterizzato da uno specifico valore Vs, e quindi il relativo grafico dell'andamento della Vs in profondità,.

Litologia presunta	Profondità totale [m]	Sismostrati [m]	Vs [m/s]
Terreno vegetale	0.60	0.60	85
Limi e argille tenere	4.00	3.40	165
Limi e argille tenere	11.00	7.00	200
Limi e argille sab. medio-compatte	27.00	16.00	330
Limi e argille sab. medio-compatte	49.00	22.00	310
Limi e argille sab. compatte	125.00	76.00	390
Substrato argilloso non rigido	inf.	inf.	540

Il valore medio risultante dall'elaborazione fornisce la seguente Vs30, valore che non va assunto come dato certo, ma considerando un margine di errore almeno del 20%.

$Vs_{30}=257m/s \pm 50m/s$

Il valore ottenuto classifica il terreno come <u>sito C.</u>

	Descrizione del profilo stratigrafico	V_{s30} (m/s)
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.	180 – 360

ELEMENTI di MICROZONAZIONE SISMICA

L' "AREA VIA REDA 2" è collocata nel territorio comunale di Faenza ed è collocabile tra il margine appenninico padano e la pianura, a monte della stessa abbiamo il territorio collinare pertanto l'area è morfologicamente classificabile come Margine appenninico-padano di tipo B caratterizzato da terreni prevalentemente fini sovrastanti orizzonti grossolani (ghiaie, ghiaie sabbiose); il substrato geologico è generalmente costituito da sabbie marine pleistoceniche o da peliti plio-pleistoceniche (substrato non rigido); le prove penetrometriche e la modellazione sismica evidenziano la presenza di depositi alluvionali fini di spessore superiore a 30 m, gli strati grossolani sovrastano altri strati di terreni fini presenti fino al substrato.

Si considerano i coefficienti di amplificazione sismica relativi alla fascia di velocità relativa a 250 m/s

Tabella per il calcolo dei coefficienti di amplificazione sismica (DGR n.2193 del 21/12/2015)

F.A. P.G.A.: rapporto tra massima ampiezza dell'accelerazione su affioramento rigido (amax,r) e massima ampiezza dell'accelerazione alla superficie del deposito (amax,s) alla frequenza f.

F.A. S.I.: Intensità spettrale di Housner, indicatore della pericolosità sismica, è definito come l'area sottesa dello spettro di risposta di pseudo velocità relative ai tre intervalli

MARGINE APPENNINICO-PADANO: settore di transizione tra la zona collinare (Appennino) e la pianura caratterizzato da terreni prevalentemente fini sovrastanti orizzonti grossolani (ghiaie, ghiaie sabbiose); il substrato geologico è generalmente costituito da sabbie marine pleistoceniche o da peliti plio-pleistoceniche (substrato non rigido); questo settore è suddiviso in:

MARGINE di tipo A: caratterizzato da spessore dei terreni fini sovrastanti gli orizzonti grossolani inferiore a 30 m; gli strati grossolani sovrastano direttamente il substrato geologico MARGINE di tipo B: caratterizzato da spessore dei terreni fini superiore a 30 m; gli strati grossolani sovrastano altri strati di terreni fini presenti fino al substrato;

Vs30	150	200	250	300	350	400
F.A. P.G.A	1.6	1.6	1.6	1.6	1.6	1.5
F.A SI1	1.9	1.9	1.9	1.8	1.7	1.6
F.A SI2	2.9	2.8	2.5	2.3	2.1	2.0
F.A SI3	3.3	3.1	2.7	2.4	2.2	2.0

CONCLUSIONI

- Il terreno indagato e classificabile come sito C;
- La velocità stimata è pari a Vs30 = 257 m/s;
- La frequenza caratteristica del sito è Fo = 0,9 Hz;
- L'accelerazione di gravita del sito è **ag** = **0,204** (**SLV**);
- L'accelerazione massima è Amax = 2,797 (SLV);
- L' accelerazione massima orizzontale di picco al suolo, cioè per T = 0, espressa in frazione dell'accelerazione di gravità per il comune di Faenza è g (a_{refg}) = 0,2063;
- La categoria topografica è **T1**;
- L'area è classificabile come Margine appenninico-padano di tipo B;
- Si assumono come coefficienti di amplificazione sismica quelli relativi alla fascia di velocità pari a 250 m/s;
- Si riportano i coefficienti di amplificazione sismica su base regionale, tali coefficienti non sono vincolanti ai fini della progettazione:

P.G.A = 1.6

S.I.1 per l'intervallo 0.1s < To < 0.5s = 1,9

S.I.2 per l'intervallo 0.5s < To < 1.0s = 2.5

S.I.3 per l'intervallo 0.5s < To < 1.5s = 2,7

Faenza, Marzo 2019

Dr. Geol. Bruno Gardegni